您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于NLADRC的水下飞行器姿态控制算法

基于NLADRC的水下飞行器姿态控制算法

124    2024-04-26

¥0.50

全文售价

作者:蒋皓1, 贾云飞1, 陶灿辉2

作者单位:1. 南京理工大学机械工程学院,江苏 南京 210094;
2. 中国船舶科学研究中心,江苏 无锡 214000


关键词:水下飞行器;姿态控制;非线性自抗扰控制;抗扰性


摘要:

针对水下飞行器系统模型中非线性强、并且在水下运动的过程中常遇到各种干扰的问题,提出一种抗扰性较强的非线性自抗扰姿态控制算法。根据刚体动力学理论,得到水下飞行器的三自由度俯仰运动模型,并详细阐述自抗扰控制器的结构及各个组成部分,确定参数整定的原则。仿真表明本算法可以通过单一改变观测器和控制器带宽大小而完成对姿态跟踪控制的调整,与传统PID控制和最优控制相比,非线性自抗扰控制器喷管摆角变化幅度和超调量更小、过渡时间更短,在有脉冲力矩干扰情况下,控制效果更好,为后面水下飞行器的进一步实验提供理论依据。


Attitude control algorithm of underwater vehicle based on NLADRC
JIANG Hao1, JIA Yunfei1, TAO Canhui2
1. College of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2. China Shipbuilding Science Research Center, Wuxi 214000, China
Abstract: Aiming at the problems of strong nonlinearity in the underwater vehicle system model and various disturbances in the process of underwater motion, a nonlinear active disturbance rejection attitude control algorithm with strong immunity is proposed. According to the rigid body dynamics theory, the three-degree-of-freedom pitching motion model of underwater vehicle is obtained. The structure and components of ADRC are described in detail, and the principle of parameter tuning is determined. The simulation shows that this algorithm can complete the adjustment of attitude tracking control by changing the bandwidth of the observer and the controller. Compared with the traditional PID control and optimal control, the variation amplitude and overshoot of the nozzle swing angle of the nonlinear active disturbance rejection controller are smaller, and the transition time is shorter. In the case of pulse torque disturbance, the control effect is better, which provides a theoretical basis for the further experiment of the underwater vehicle.
Keywords: underwater vehicle;attitude control;nonlinear active disturbance rejection control;perturbation resistance
2024, 50(4):119-124  收稿日期: 2022-03-31;收到修改稿日期: 2022-05-13
基金项目:
作者简介: 蒋皓(1998-),男,四川遂宁市人,硕士研究生,专业方向为智能控制。
参考文献
[1] 王通, 齐向东. 遗传算法PID控制在AUV姿态调节中的应用[J]. 自动化技术与应用, 2020, 39(4): 8-14
WANG T, QI X D. Application of genetic algorithm pid control in AUV attitude adjustment[J]. Techniques of Automation and Applications, 2020, 39(4): 8-14
[2] 高国章, 李修宇. 基于预测控制的水下自航器抗海浪变深控制分析[J]. 船舶工程, 2020, 42(6): 91-97
GAO G Z, LI X Y. Analysis of anti wave depth control for underwater autonomous vehicles based on predictive control[J]. Ship Engineering, 2020, 42(6): 91-97
[3] 李泽宇, 刘卫东, 李乐, 等. 基于RBF网络Q学习的AUV路径跟踪控制方法[J]. 西北工业大学学报, 2021, 39(3): 477-483
LI Z Y, LIU W D, LI L, et al. AUV path tracking control method based on RBF network Q-learning[J]. Journal of Northwestern Polytechnical University, 2021, 39(3): 477-483
[4] XIA Y K, XU K, LI Y, et al. Improved line-of-sight trajectory tracking control of under-actuated AUV subjects to ocean currents and input saturation[J]. Ocean Engineering, 2019, 174(15): 14-30
[5] LIANG X, WAN L, JAMES BLAKE, et al. Pathfollowing of an Underactuated AUV Based on Fuzzy Backstepping Sliding Mode Control[J]. International Journal of Advanced Robotic Systems, 2016, 13(3): 122-124
[6] 李宏宇, 王莹, 陆震, 等. 基于PSO-GA算法和神经网络的水下机器人姿态协调控制[J/OL]. 中国测试: 1-7[2022-04-16].
LI H Y, WANG Y, LU Z, et al. Attitude coordination control of underwater robots based on PSO-GA algorithm and neural network [J/OL].  China Measurement & Test: 1-7 [2022-04-16].
[7] 刘用, 杨晓飞, 夏金铭. 基于模糊算法的AUV避障与姿态控制[J]. 江苏大学学报(自然科学版), 2021, 42(6): 655-660
LIU Y, YANG X F, XIA J M. AUV obstacle avoidance and attitude control based on fuzzy algorithm[J]. Journal of Jiangsu University (Natural Science Edition), 2021, 42(6): 655-660
[8] 张成举, 王聪, 曹伟, 等. 基于无迹卡尔曼滤波的超空泡航行体最优控制研究[J]. 兵工学报, 2019, 40(6): 1235-1243
ZHANG C J, WANG C, CAO W, et al. Research on optimal control of supercavitating vehicle based on unscented Kalman filter[J]. Journal of Ordnance Industry, 2019, 40(6): 1235-1243
[9] 韩京清. 自抗扰控制技术: 估计补偿小确定因素的控制技术[M]. 北京: 国防工业出版社, 2008.
HAN J Q. Active disturbance rejection control technology: A control technique for estimating and compensating for small deterministic factors [M]. Beijing: National Defense Industry Press, 2008
[10] GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]//American Control Conference. 2003: 4989-4996.
[11] HUANG Y, XUE W C. Active disturbance rejection control: Methodology and theoretical analysis[J]. ISA Transactions, 2014, 53(4): 6083-6090