您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>MSCR试验对不同老化程度高黏沥青高温性能分析

MSCR试验对不同老化程度高黏沥青高温性能分析

117    2024-04-26

¥0.50

全文售价

作者:奚晨晨1,2, 严守靖1,2, 魏金涛1,2, 孙团伟1,2, 张伟3

作者单位:1. 浙江省交通运输科学研究院,浙江 杭州 310023;
2. 浙江省道桥检测与养护技术研究重点实验室,浙江 杭州 310023;
3. 中铁隧道局集团有限公司市政工程公司,浙江 杭州 310023


关键词:高黏沥青;多重应力蠕变恢复试验(MSCR);老化程度;高温性能;蠕变恢复率;应力敏感因子


摘要:

基于多重应力蠕变恢复试验(MSCR)研究3种高黏沥青在不同老化程度下的高温性能的影响,采用蠕变恢复率及不可恢复柔量评价不同老化条件下高黏沥青高温抵抗外界荷载作用能力,并分析高黏沥青的应力敏感性。研究表明:经短期老化与长期老化后,高黏沥青老化后变得更坚硬,且Ⅰ型高黏沥青在不同应力和不同老化条件下抗变形能力最优。不同老化条件下,Ⅰ型与Ⅱ型高黏沥青的平均蠕变恢复率均高于SBS改性沥青,平均不可恢复柔量均小于SBS改性沥青,表明添加高黏改性剂对提高沥青的弹性恢复性能与高温抗流动变形能力具有明显作用。3种高黏沥青在不同老化程度下的应力敏感性大小为Ⅱ型<Ⅰ型<SBS改性沥青,与其蠕变恢复率大小顺序相反,说明应力敏感性与平均蠕变恢复率具有良好的负相关性。结果表明:多重应力蠕变恢复试验考虑不同老化条件下高黏改性沥青的高温黏弹特性,采用平均蠕变恢复率、平均不可恢复柔量和应力敏感系数指标,对全面评价高黏改性沥青的不同老化程度下高温性能具有重要作用。


High temperature performance evaluation of high viscosity asphalt with different aging degrees based on MSCR test
XI Chenchen1,2, YAN Shoujing1,2, WEI Jintao1,2, SUN Tuanwei1,2, ZHANG Wei3
1. Zhejiang Scientific Research Institute of Transport, Hangzhou 310023, China;
2. Key Laboratory of Road and Bridge Detection and Maintenance Technology Research of Zhejiang Province, Hangzhou 310023, China;
3. Municipal Engineering Company, China Railway Tunnel Group Co., Ltd., Hangzhou 310023, China
Abstract: In this paper, multiple stress creep recovery test (MSCR) was used to study the effects of three kinds of high viscosity asphalt on the high temperature performance under different aging degrees. The high temperature load resistance and stress sensitivity of high viscosity asphalt under different aging conditions were evaluated by creep recovery rate and non-recoverable compliance. The results show that after short-term aging and long-term aging, the high viscosity asphalt becomes harder after aging, and the deformation resistance of type I high viscosity asphalt is the best under different stress and aging conditions. Under different aging conditions, the average creep recovery rate of type I and type II high viscosity asphalt is higher than that of SBS modified asphalt, and the average unrecoverable compliance is lower than that of SBS modified asphalt, indicating that the addition of high viscosity modifier plays a significant role in improving the elastic recovery performance and high-temperature flow deformation resistance of asphalt. The stress sensitivity of three kinds of high viscosity asphalt under different aging degree is in reverse order with creep recovery rate, which indicates that there is a good negative correlation between stress sensitivity and average creep recovery rate of three kinds of high viscosity bitumen. It shows that the stress sensitivity of three kinds of high viscosity bitumen is different from that of SBS modified asphalt. The results show that the high temperature viscoelastic properties of high viscosity modified asphalt under different aging conditions are considered in the multi-stress creep recovery test. The average creep recovery rate, the average non-recoverable flexibility and the stress sensitivity coefficient are adopted in the multi-stress creep recovery test. It plays an important role in evaluating the high temperature performance of high viscosity modified asphalt at different aging degrees.
Keywords: high viscosity asphalt;multiple stress creep recovery(MSCR) test;aging degrees;high temperature performance;creep recovery rate;stress sensitive factor
2024, 50(4):153-159  收稿日期: 2022-04-09;收到修改稿日期: 2022-05-28
基金项目: 浙江省科研院所研究开发专项(ZK202202);浙江省科技攻关计划(2021C01106)
作者简介: 奚晨晨(1993-),男,安徽芜湖市人,助理工程师,硕士,研究方向为道路结构与材料。
参考文献
[1] 曹东伟, 卢杰, 张海燕, 等. 全透式沥青路面专用高黏度改性沥青性能对比[J]. 长安大学学报(自然科学版), 2019, 39(1): 17-24
CAO D W, LU J, ZHANG H Y, et al. Contrastive on performance of fully permeable asphalt pavement dedicated high-viscosity modified asphalt[J]. Journal of Chang'an University(Natural Science Edition), 2019, 39(1): 17-24
[2] 崔亚楠, 陈瑞璞, 陈超, 等. 老化对改性沥青微观结构及疲劳性能的影响[J]. 复合材料学报, 2018, 35(6): 1619-1628
CUI Y N, CHEN R P, CHEN C, et al. Effect of aging on microstructure and fatigue performance of modified asphalt[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 1619-1628
[3] DIAB A, ENIEB M, SINGH D, et al. Influence of aging on properties of polymer-modified asphalt[J]. Construction and Building Materials, 2019, 196: 54-65
[4] 曾诗雅, 曹正, 朱宗凯. 基于多应力蠕变恢复试验的改性沥青高温性能研究[J]. 公路工程, 2014, 39(1): 246-249
ZENG S Y, CAO Z, ZHU Z K. Study on high temperature property of modified asphalt binder based on multiple stress creep recovery test[J]. Highway Engineering, 2014, 39(1): 246-249
[5] 周庆华, 沙爱民. 沥青高温流变评价指标对比[J]. 交通运输工程学报, 2008(1): 27-30
ZHOU Q H, SHA A M. Comparison of high-temperature rheologicai evaluation indices for bitumen[J]. Journal of Traffic and Transportation Engineering, 2008(1): 27-30
[6] ZHANG R, WANG H N, GAO J F, et al. High temperature performance of SBS modified bio-asphalt[J]. Construction and Building Materials, 2017, 144: 99-105
[7] 董强. 多级应力重复蠕变恢复试验应用于沥青高温性能评价[J]. 公路工程, 2017, 42(1): 35-38
DONG Q. High temperature performance evaluation of asphalt based on multiple stress creep recovery test[J]. Highway Engineering, 2017, 42(1): 35-38
[8] 王鹏, 曾凡奇, 黄晓明. 沥青高温性能指标的灰色关联度分析[J]. 交通运输工程学报, 2006(3): 32-36
WANG P, ZENG F Q, HUANG X M. Grey relation degree analysis of high-temperature performance indexes of asphalt[J]. Journal of Traffic and Transportation Engineering, 2006(3): 32-36
[9] VLACHOVICOVA Z, WEKUMBURA C, STASTNA J, et al. Creep characteristics of asphalt modified by radial styrene–butadiene–styrene copolymer[J]. Construction and Building Materials, 2007, 21(3): 567-577
[10] 刘丽, 郝培文, 肖庆一, 等. 沥青胶浆高温性能及评价方法[J]. 长安大学学报(自然科学版), 2007(5): 30-34
LIU L, HAO P W, XIAO Q Y, et al. High temperature properties and evaluation method of asphalt mortar[J]. Journal of Chang'an University(Natural Science Edition), 2007(5): 30-34
[11] 周庆华, 贾渝. 沥青胶结料高温性能试验方法的评价[J]. 长安大学学报(自然科学版), 2008(2): 9-12
ZHOU Q H, JIA Y. Evaluation on test methods for high temperature performance of asphalt binders[J]. Journal of Chang'an University(Natural Science Edition), 2008(2): 9-12
[12] CHRISTENSEN D, BONAQUIST R F. Modification of the resistivity-rutting model to use recoverable creep compliance[J]. Transportation Research Record, 2015, 2505(1): 48-56
[13] ZHANG L, XING C, GAO F, et al. Using DSR and MSCR tests to characterize high temperature performance of different rubber modified asphalt[J]. Construction and Building Materials, 2016, 127: 466-474
[14] DUBOIS E, MEHTA D Y, NOLAN A. Correlation between multiple stress creep recovery (MSCR) results and polymer modification of binder[J]. Construction and Building Materials, 2014, 65: 184-190
[15] LV Q, HUANG W D, SADEK H, et al. Investigation of the rutting performance of various modified asphalt mixtures using the hamburg wheel-tracking device test and multiple stress creep recovery test[J]. Construction and Building Materials, 2019, 206: 62-70
[16] TANG N P, HUANG W D, ZHENG M, et al. Investigation of gilsonite polyphosphoric acid and styrene butadiene styrene modified asphalt binder using the multiple stress creep and recovery test[J]. Road Materials and Pavement Design, 2016, 1-14.
[17] WAJAHAT A A, HWAN K H , MITHIL M , et al. Multiple stress creep recovery (MSCR) characterization of polymer modified asphalt binder containing wax additives[J]. International Journal of Pavement Research and Technology, 2018: S1996681418300063.
[18] KRÓL J, RADZISZEWSKI P, KOWALSKI K J. Influence of microstructural behavior on multiple stress creep recovery (MSCR) in modified bitumen[J]. Procedia Engineering, 2015, 111: 478-484
[19] 郑茂. SBS及复合改性沥青高温性能研究[J/OL]. 中国测试: 1-8 [2022-05-05]. http://kns.cnki.net/kcms/detail/51.1714.TB.20220324.1713.009.html.
ZHENG M. Study on high temperature performance of SBS and composite modified asphalt[J/OL]. China Measurement & Test: 1-8 [2022-05-05]. http://kns.cnki.net/kcms/detail/51.1714.TB.20220324.1713.009.html.
[20] 唐乃膨, 黄卫东. 基于MSCR试验的SBS改性沥青高温性能评价与分级[J]. 建筑材料学报, 2016, 19(4): 665-671
TANG N P, HUANG W D. High temperature performance evaluation and grading of SBS modified asphalt based on multiple stress creep recovery test[J]. Journal of Building Materials, 2016, 19(4): 665-671