您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于内压法的锆合金薄壁管泊松比试验研究

基于内压法的锆合金薄壁管泊松比试验研究

218    2024-05-24

免费

全文售价

作者:赵兴华, 唐韵, 徐尹杰, 邢鲁, 贺云

作者单位:中国测试技术研究院,四川 成都 610021


关键词:内压法;锆合金;薄壁管;泊松比


摘要:

锆合金包壳管在核电应用中存在变形及破裂等问题,严重影响核电运行安全。为了更好地评价锆合金包壳管等薄壁管材受内压时的变形性能,给燃料组件的设计、计算、验证提供参考,设计基于内压法的泊松比测试方法。根据薄壁圆筒受均匀内压时的应力解,推导出基于内压加载的薄壁管泊松比理论公式。按照该理论公式设计合理的内压试验方法,采用该方法对N36锆合金薄壁管开展20~400 ℃下的泊松比试验,同时通过拉伸法进行相应温度下的对比试验。结果表明,内压试验方法可以有效获得不同温度下锆合金薄壁管的泊松比,且内压试验方法得到的锆合金薄壁管泊松比与拉伸法结果较为一致,相对误差均在2%以内。试验结果同时表明:N36锆合金薄壁管的泊松比随试验温度的增加呈增大趋势。


Experimental study on Poisson’s ratio of zirconium alloy thin-walled tube based on internal pressure method
ZHAO Xinghua, TANG Yun, XU Yinjie, XING Lu, HE Yun
National Institute of Measurement and Testing Technology, Chengdu 610021, China
Abstract: The problems of deformation and rupture of zirconium alloy cladding tubes in nuclear power applications seriously affect the safety of nuclear power operation. In order to better evaluate the deformation performance of thin-walled tubes such as zirconium alloy cladding tubes under internal pressure, and provide reference for the design, calculation and verification of fuel assembly, a Poisson’s ratio test method based on internal pressure method was designed. According to the stress solution of the thin-walled tube under uniform internal pressure, the theoretical formula for obtaining the Poisson’s ratio of the thin-walled tube by applying internal pressure is derived. Design reasonable internal pressure test method according to the theoretical formula, this method is used to carry out Poisson’s ratio test at 20 ℃ to 400 ℃ for N36 zirconium alloy thin-walled tube, and the comparative test at corresponding temperature is carried out by tensile method. The results show that the internal pressure test method can effectively obtain the Poisson’s ratio of zirconium alloy thin-walled tube at different temperatures. And the Poisson’s ratio of zirconium alloy thin-walled tube obtained by the internal pressure test method is consistent with the results obtained by the tensile method, and the relative errors are all within 2%. At the same time, the test results show that the Poisson’s ratio of N36 zirconium alloy thin-walled tube increases with the increase of test temperature.
Keywords: internal pressure method;zirconium alloy;thin-walled tube;Poisson’s ratio
2024, 50(5):42-46,61  收稿日期: 2023-02-12;收到修改稿日期: 2023-03-27
基金项目:
作者简介: 赵兴华(1988-),男,山东泰安市人,助理研究员,硕士,研究方向为力学计量检测。
参考文献
[1] 任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展[J]. 力学学报, 2019, 51(3): 656-687.
REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656-687.
[2] 高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021, 49(5): 38-47.
GAO Y K. Auxetic metamaterials and structures[J]. Journal of Materials Engineering, 2021, 49(5): 38-47.
[3] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14.
YU J J, XIE Y, PEI X. State-of-art of metamaterials with negative Poisson’s ratio[J]. Journal of Mechanical Engineering, 2018, 54(13): 1-14.
[4] 单桂芳, 杨伟, 冯建民, 等. 材料泊松比测试方法的研究进展[J]. 材料导报, 2006(3): 15-20.
SHAN G F, YANG W, FENG J M, et al. Advances in test methods for Poisson’s ratio of materials[J]. Materials Reports, 2006(3): 15-20.
[5] 王韵璐, 王正, 李敏敏, 等. MDF弹性模量、泊松比和剪切模量静态测试方法探讨[J]. 北京林业大学学报, 2017, 39(10): 117-121.
WANG Y L, WANG Z, LI M M, et al. Discussion on static testing method of material MDF constants of elastic modulus, Poisson's ratio and shear modulus[J]. Journal of Beijing Forestry University, 2017, 39(10): 117-121.
[6] 赵澎涛, 于慧臣, 何玉怀. 单晶高温合金弹性模量和泊松比测试方法的现状分析[J]. 航空材料学报, 2019, 39(3): 25-34.
ZHAO P T, YU H C, HE Y H. Current situation of research on test methods for elastic modulus and Poisson’s ratio of single crystal superalloys[J]. Journal of Aeronautical Materials, 2019, 39(3): 25-34.
[7] 李禾, 严超华, 李仁增, 等. 云纹干涉法测定高温材料弹性模量及泊松比[J]. 机械强度, 2004(3): 302-306.
LI H, YAN C H, LI R Z, et al. Measuring elastic modulus and poisson ratio for high-temperature materials by moiré interferometry[J]. Journal of Mechanical Strength, 2004(3): 302-306.
[8] 李禾, 张少钦, 邓颖, 等. 高温泊松比测试方法与对比[J]. 宇航材料工艺, 2011, 41(6): 28-31.
LI H, ZHANG S Q, DENG Y, et al. Methods for testing of Poisson’s ratio at elevated temperature[J]. Aerospace Materials & Technology, 2011, 41(6): 28-31.
[9] 余建新, 王晓鹏, 崔喜平. 高温环境下材料泊松比测试方法研究[J]. 实验科学与技术, 2022, 20(1): 28-33.
YU J X, WANG X P, CUI X P. Material Poisson’s ratio measurement method at elevated temperatures[J]. Experiment Science and Technology, 2022, 20(1): 28-33.
[10] 王连庆, 王红缨, 马文江. 460 MPa耐火钢高温泊松比试验研究[J]. 工业建筑, 2021, 51(3): 176-179.
WANG L Q, WANG H Y, MA W J. Experimental research on poisson’s ratios of 460 megapascal heat-resisting steel at high temperature[J]. Industrial Construction, 2021, 51(3): 176-179.
[11] 谢梦, 刘琼, 袁波, 等. 锆合金管氢化物应力再取向及其环向拉伸实验方法研究[J]. 世界有色金属, 2022(13): 229-231.
XIE M , LIU Q, YUAN B, et al. Research on hydride reorientation of zircaloy tube and its hoop tensile test[J]. World Nonferrous Metals, 2022(13): 229-231.
[12] 闫萌, 彭倩, 王朋飞, 等. N36锆合金包壳管周向拉伸试验方法研究[J]. 核动力工程, 2012, 33(S2): 13-16.
YAN M. PWNG Q, WANG P F, et al. Research on hoop tensile test method for N36 zirconium tube[J]. Nuclear Power Engineering, 2012, 33(S2): 13-16.
[13] 陆玉华. 薄壁锆合金管材组织与环向性能研究[D]. 西安: 西安建筑科技大学, 2019.
LU Y H. The research on microstructure and property of zirconium tube with thin-wall[D]. Xi’an: Xi’an University of Architecture and Technology, 2019.
[14] 张长义, 宁广胜, 佟振峰, 等. M5锆合金包壳管轴向和环向拉伸性能测试[J]. 原子能科学技术, 2005(S1): 34-36.
ZHANG C Y, NING G S, TONG Z F, et al. Test on tension properties of M5 alloy[J]. Atomic Energy Science and Technology, 2005(S1): 34-36.
[15] 王洋. 基于光纤传感的管道和容器压力测量方法研究[J]. 中国测试, 2022, 48(2): 41-48.
WANG Y. Rasearch on pressure measurement method of pipeline and vessel based on optical fiber sensor[J]. China Measurement & Test, 2022, 48(2): 41-48.
[16] 韩志鑫, 贾广成, 杨锐, 等. 校准300℃及以下廉金属热电偶自动测量系统的测试方法研究[J]. 中国测试, 2022, 48(S1): 7-12.
HAN Z X, JIA G C, YANG R, et al. Research on test method of auto-measuring system for 300℃ & under base metal thermocouples[J]. China Measurement & Test, 2022, 48(S1): 7-12.
[17] 赵可沦, 江境宏, 邓进, 等. 基于遗忘因子递推最小二乘法的锂电池等效电路模型参数辨识方法[J]. 电子测量技术, 2022, 45(23): 53-58.
ZHAO K L, DENG J H, DENG J, et al. Parameter identification method of lithium battery equivalent circuit model based on forgetting factor recursive least squares[J]. Electronic Measurement Technology, 2022, 45(23): 53-58.