您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>聚焦超声温度分布实验测量方法研究

聚焦超声温度分布实验测量方法研究

236    2024-05-24

免费

全文售价

作者:石婉婷, 赵鹏, 王月兵, 徐佳奇, 谢鹏飞, 沈平平

作者单位:中国计量大学,浙江 杭州 310018


关键词:阵列传感器;聚焦超声;温度分布;高分子基膜


摘要:

针对医疗领域中聚焦超声场温度分布测量操作繁琐、条件复杂等问题,研制一种柔性膜式温度阵列传感器及测量方法。利用PTC效应实现温度测量,基于聚乙烯高分子基薄膜研制温度传感器阵列,基于多通道快速采集系统搭建恒温水浴标定系统,配制仿生体模,并进行聚焦超声温度分布实验。标定结果表明:该传感器可以覆盖6 mm测温范围,空间分辨率为0.4 mm,测量重复性为2.4%以内,可用于聚焦超声温度分布的测量。与仿真及热电偶测量结果比较表明,焦点最高温度偏差在1.25 ℃以内。基于高分子基薄膜的聚焦超声场温度分布测量方法是一种精度高、操作简单的测温方法。


Study on temperature distribution experimental measurement methods for focused ultrasound field
SHI Wanting, ZHAO Peng, WANG Yuebing, XU Jiaqi, XIE Pengfei, SHEN Pingping
China Jiliang University, Hangzhou 310018, China
Abstract: A flexible membrane temperature array sensor and measurement method is developed to solve the problems of tedious operation and complex conditions in the measurement of temperature distribution of focused ultrasound in the medical field. The temperature sensor array was developed based on polyethylene polymer-based film, using PTC effect to realize temperature measurement. A constant temperature water bath calibration system was built based on the multi-channel fast acquisition system, and focused ultrasound temperature distribution experiment is implemented in bionic phantom. Calibration results show that the sensor can cover a temperature measuring range of 6 mm, the spatial resolution is 0.4 mm, and the measurement repeatability is less than 2.4%. Compared with the results of simulation and thermocouple measurement, the maximum focus temperature deviation is within 1.25 ℃, which means that the measuring method has high-precision and simple operation.
Keywords: array sensor;focused ultrasound;temperature distribution;polymer base membrane
2024, 50(5):86-92  收稿日期: 2022-08-17;收到修改稿日期: 2022-10-19
基金项目: 浙江省大学生科技创新活动计划(新苗人才计划)项目(2022R409006);浙江省高校实验室工作研究项目(ZD202111)
作者简介: 石婉婷(2001-),女,山东菏泽市人,硕士研究生,专业方向为聚焦超声肿瘤治疗机理研究。
参考文献
[1] 陈柏炜. 基于低频低强度超声的可穿戴式肿瘤理疗方法研究[D]. 北京: 中国科学院研究生院(理化技术研究所), 2009.
LU B W. Study on wearable cancer physiotherapy based onlow-power low-frequency ultrasound[D].BeiJing: Graduate School of the Chinese Academy of Sciences (Technical Institute of Physics and Chemistry), 2009.
[2] 林振钰. 薄膜热电偶的制备及其性能研究[D]. 太原: 中北大学, 2021.
LIN Z Y. Study on preparation and performance of thin film thermocouple[D]. Taiyuan: North University of China, 2021.
[3] 崔云先, 高富来, 朱熙, 等. 航天器用薄膜温度传感器的研制及性能研究[J]. 航空学报, 2020, 41(12): 410-421.
ZHU Y X, GAO F L, ZHU X, et al. Thin film temperature sensor for spacecraft: development and performance[J].  Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 410-421.
[4] 王颐壕, 刘壮, 谢龙, 等. 基于PTC特性的薄膜电加热器温控方法[J]. 自动化与仪表, 2021, 36(5): 37-40.
WANG Y H, LIU Z, XIE L, et al.  Research on temperature control of thin film electric heater based on PTCEffect[J]. Automation & Instrumentation, 2021, 36(5): 37-40.
[5] 于广滨, 于明新, 戴冰, 等. 高温薄膜快响应传感器的设计及其仿真优化[J]. 仪表技术与传感器, 2021(3): 9-13.
YU G B, YU M X, DAI B, et al. Design and simulation optimization of high temperature thin filmfast response sensor[J]. Instrument Technique and Sensor, 2021(3): 9-13.
[6] 薛伟. 新型温度传感器设计及加工关键技术研究[D]. 太原: 中北大学, 2021.
XUE W. Key Technologies of design and processing of a noveltemperature sensor[D]. Taiyuan: North University of China, 2021.
[7] 刘坤林, 彭晨. 快速响应型薄膜温度传感器制备[J]. 科学技术创新, 2021(3): 8-10.
LIU K L, PENG C. Preparation of fast response thin filmtemperature sensor[J]. Scientific and Technological Innovation, 2021(3): 8-10.
[8] 袁晓芳. 高分子基PTC材料PTC强度的影响因素[J]. 塑料制造, 2010(10): 65-67.
YUAN X F. Factors influencing PTC intensity of PPTC[J]. Plastics Manufacture, 2010(10): 65-67.
[9] 王博文, 刘兴鹏, 彭斌, 等. 耐1 000℃高温的Pt/ITO薄膜电机SAW温度传感器[J]. 中国测试, 2020, 46(12): 67-72.
WANG B W, LIU X P, PENG B, et al. Pt/ITO thin film electrode SAW temperature sensor working at 1 000 ℃[J]. China Measurement & Test, 2020, 46(12): 67-72.
[10] 许晓秋, 李景庆, 张爽男, 等. 聚合物基PTC热敏导电材料的性能及机理研究[J]. 材料科学与工艺, 2003(3): 297-300.
XU X Q, LI J Q, ZHANG S N, et al. Properties and mechanism of PTC conductivepolymeric composites in PE/CB systems[J].  Materials Science and Technology, 2003(3): 297-300.
[11] 李继新, 王立岩, 李素君, 等. 炭黑填充PE-HD/EVA/PE-LD导电发泡复合材料的阻温特性[J]. 中国塑料, 2010, 24(9): 49-52.
LI J X, WANG L Y, LI S J, et al . Resistivity-temperature behavior of acetylene carbon black Filled PE-HD/EVA/PE-LD conductive foamed composites[J]. China Plastics, 2010, 24(9): 49-52.
[12] TAKEGAMI K, KAENEKO Y, WATANABE T, et al. Polyacrylamide gel containing egg white as new model for irradiation experiments using focused ultrasound - ScienceDirect[J]. Ultrasound in Medicine & Biology, 2004, 30(10): 1419-1422.
[13] 于群, 王月兵, 曹文旭, 等. 聚焦换能器声强和声功率测量方法研究[J]. 中国测试, 2017, 43(1): 27-32.
YU Q, WANG Y B, CAO W X, et al. Study on sound intensity and sound power measurement of focused transducer[J]. China Measurement & Test, 2017, 43(1): 27-32.
[14] 胡红波, 季文晖. 测量方程、观测方程与不确定度评估[J]. 中国测试, 2020, 46(8): 7-12.
HU H B, JI W H. Measurement equation, observation equation and uncertainty evaluation[J]. China Measurement & Test, 2020, 46(8): 7-12.
[15] 黄清治, 孙哲, 隋丹, 等. 自动气象站HYA-T型地温传感器检定的不确定度分析[J]. 黑龙江学, 2018, 9(9): 40-41.
HUANG Q Z, SUN Z, SUI D, et al . Analysis of uncertainty for the verification of HYA-T groundtemperature sensor in automatic weather station[J]. Heilongjiang Science, 2018, 9(9): 40-41.