您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>总温总压组合式受感器设计

总温总压组合式受感器设计

223    2024-05-24

免费

全文售价

作者:张卓利, 李本亮, 邓宇

作者单位:中国飞行试验研究院,陕西 西安 710089


关键词:总温;总压;敏感组件;屏蔽罩;总温恢复系数;时间常数


摘要:

由于一般总温传感器体积大、功能单一,不能适应小型飞行器安装使用,因此设计了一种小型总温总压组合式受感器。其中,对受感器外形结构、屏蔽罩、密封结构等进行设计,并设计一种温度压力一体式敏感组件,采用玻璃烧结工艺解决敏感组件的耐高温、密封、绝缘等关键技术。通过Fluent流体仿真软件对受感器流场进行模拟仿真,分析引压管对受感器内部流场的影响,结合仿真结果对受感器进行优化设计。经风洞试验校准,在Ma=0.3至Ma=0.9范围内,受感器总温恢复系数≥0.970;Ma=0.3(高度H=0)条件下,受感器时间常数小于0.9 s。1 MPa压力条件下进行气密性测试,1 min内压力下降不超过300 Pa;在Ma=0.3至Ma=1.0范围内总压误差优于±0.02,达到较高的技术指标要求。


Design of total temperature and total pressure combined sensor
ZHANG Zhuoli, LI Benliang, DENG Yu
Chinese Flight Test Establishment, Xi’an 710089, China
Abstract: Because the general total temperature sensor usually has large volume and single function, it is not able to be well suitable for the small aircraft, so a kind of small combined total temperature and total pressure sensor was designed. In the sensor, the appearance structure, stagnation hood, sealing structure were specially designed, and a kind of total temperature and total pressure sensitive component was designed which used the Glass Sintering Process to solve the key technologies of high temperature resistance, sealing and insulation performance. The flow field of the sensor and the influence of the total pressure pipe on the internal flow field are simulated by Fluent. Design of the sensor is improved based on the simulation results. The wind tunnel calibration shows that the total temperature recovery coefficient of the sensor is ≥ 0.970 in the range of Ma=0.3 to Ma=0.9. Under the condition of Ma=0.3(altitude H=0), the time constant of the sensor is less than 0.9 s. Under 1 MPa pressure, the pressure drop within 1 min is not exceed 300 Pa. The total pressure error is better than ±0.02 in the range of Ma=0.3 to Ma=1.0. It achieved the requirements of the aircraft and reached higher technical indicators.
Keywords: total temperature;total pressure;sensitive component;stagnation hood;total temperature recover coefficient;time constant
2024, 50(5):106-113  收稿日期: 2022-10-10;收到修改稿日期: 2022-12-09
基金项目:
作者简介: 张卓利(1983-),男,陕西洋县人,高级工程师,主要从事传感器设计工作。
参考文献
[1] 刘燚. 试飞用高精度总温测量方案设计[J]. 研究与试验, 2019, 32(6): 17-19.
LIU Y. Study and design of high accuracy total temperature measurement method for flight test[J]. Mechanical Research & Application, 2019, 32(6): 17-19.
[2] 袁文铎, 大气总温传感器误差修正方法研究[J]. 航空维修与工程, 2014(1): 93-95.
YUAN W D. Research on total air temperature sensor error correction method[J]. Aviation Maintenance & Engineering, 2014(1): 93-95.
[3] 佟显义, 徐微, 郑全, 等. 燃气总温传感器的设计[J]. 传感技术学报, 2016, 29(2): 301-305.
TONG X Y, XU W, ZHENG Q, et al. Design of the gastotal temperaturesensor[J]. Chinese Journal of Sensors and Actuators, 2016, 29(2): 301-305.
[4] 张伟昊, 杨伟平, 曹保武, 等. 屏蔽式总温探针流动与换热分析[J]. 航空科学技术, 2018, 29(7): 67-72.
ZHANG W H, YANG W P, CAO B W, et al. Aerodynamic and heat transfer analysis of a shielded total temperature probe[J]. Aeronautical Science & Technology, 2018, 29(7): 67-72.
[5] 李海燕, 王毅, 荆卓寅. 单屏温度传感器内部流场数值模拟研究[J]. 计测技术, 2009, 29(6): 14-16.
LI H Y, WANG Y, JING Z Y. Numerical simulation for inside flow field of single-shield temperature probe[J]. Metrology & Measurement Technology, 2009, 29(6): 14-16.
[6] 侯孟. 一种典型总温总压复合探针气动特性的试验研究[J]. 内燃机与配件, 2019, 2(7): 14-15.
[7] 西北工业大学. 航空发动机气动参数测量[M]. 北京: 国防工业出版社, 1983: 182-185.
[8] 陈廷楠. 应用流体力学[M]. 西安: 航空工业出版社, 2000: 355-361.
[9] 杜超超, 孙海玲, 刘洪德, 等. 大迎角飞行时全压受感器补偿方法研究及试飞验证[C]//(第四届)中国航空科学技术大会论文集S3(073), 2019.
[10] 戴苏明. 气流温度测量中减小测温误差途径的探讨[J]. 苏州丝绸工学院学报, 2001, 21(5): 23-27.
[11] 杨伟平, 张伟昊, 邹正平, 等. 屏蔽式总温热电偶的稳态误差分析及改型设计[J]. 航空动力学报, 2018, 33(11): 2784-2795.
YANG W P, ZHANG W H, ZOU Z P, et al. Steady state error estimation and modification of a shielded thermocouple[J]. Journal of Aerospace Power, 2018, 33(11): 2784-2795.
[12] 张绍武. 高焓高速气流总温热电偶测量技术研究[D]. 长沙: 国防科技大学, 2004.
ZHANG S W. Study of measurement technique of total temperature probe using thermocouple in high-enthalpy/high-speed airflow[D]. Changsha: National University of Defense Technology, 2004.
[13] 佟显义, 赵国昌, 宋丽萍, 等. 纵横式滞止罩设计方案研究[J]. 中国测试, 2015, 41(5): 70-74.
TONG X Y, ZHAO G C, SONG L P, et al. A design scheme of crossbar stagnation hoods[J]. China Measurement & Test, 2015, 41(5): 70-74.
[14] 张小庆, 曾来荣, 刘伟雄. 总温探针在脉冲燃烧风洞中的应用[C]//第十五届全国激波与激波管学术会议论文, 2013, 13(7): 359-364.
[15] 张进, 姜志恒, 温铁钝. 某气流总温传感器动态特性仿真及相关影响因素分析[J]. 工业仪表与自动化装置, 2020(1): 61-64.
ZHANG J, JIANG Z H, WEN T D. Transient behavior simulation and relevant influencing factor analysis for an airflow total-temperature sensor[J]. Industrial Instrumentation & Automation, 2020(1): 61-64.
[16] 王玉芳, 董素艳, 荆卓寅, 等. 球窝型总压探针气动结构选型分析研究[J]. 中国测试, 2022, 48(5): 6-13.
WANG Y F, DONG S Y, JING Z Y, et al. Analysis and research on aerodynamic structure selection of ball socket type total pressure probe[J]. China Measurement & Test, 2022, 48(5): 6-13.
[17] 张根甫, 郝晓剑, 桑涛, 等. 热电偶温度传感器动态响应特性研究[J]. 中国测试, 2015, 41(10): 68-72.
ZHANG G F, HAO X J, SANG T, et al. Study on the dynamic response of thermocouple temperature sensor[J]. China Measurement & Test, 2015, 41(10): 68-72.