您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>计及白噪声与谐波影响的复频域插值频率估计方法

计及白噪声与谐波影响的复频域插值频率估计方法

217    2024-05-24

免费

全文售价

作者:王海元1,2, 郭光1,2, 李恺1,2, 尹晓博1, 邵喜瑞3, 温和3

作者单位:1. 国网湖南省电力有限公司,湖南 长沙 410000;
2. 智能电气量测与用电技术湖南省重点实验室,湖南 长沙 410000;
3. 湖南大学电气与信息工程学院,湖南 长沙 410082


关键词:频率计量;傅里叶变换;噪声;谐波


摘要:

电力系统频率估计不可避免地受到噪声和谐波影响,准确度受到限制。傅里叶变换是频率估计的常用工具,但其固有的频谱泄漏,特别是负频谱导致的长频程泄漏,是短测量时间内难以实现频率准确估计的重要因素。该文提出一种基于矩形窗的复频域插值傅里叶变换频率估计方法,建立噪声影响下的频率估计理论方差模型,并通过仿真验证方差模型的正确性。该算法考虑负频谱导致的长频程泄漏影响,在测量窗口长度小于2个基波周期时,仍具有较高的频率估计精度。仿真和实验表明,在存在噪声和谐波的情况下,当测量窗口较短时,该算法的频率估计性能优于现有的频率估计算法。


Complex frequency domain interpolation frequency estimation method considering white noise and harmonic effects
WANG Haiyuan1,2, GUO Guang1,2, LI Kai1,2, YIN Xiaobo1, SHAO Xirui3, WEN He3
1. State Grid Hunan Electric Power Company Limited, Changsha 410000, China;
2. Hunan Province Key Laboratory of Intelligent Electrical Measurement and Electricity Technology, Changsha 410000, China;
3. College of Electrical and Information Engineering,Hunan University, Changsha 410082, China
Abstract: In the power system, frequency estimation is inevitably affected by noise and harmonics, so accuracy is limited. The Fourier Transform is a common tool for frequency estimation, but it has a problem of spectrum leakage, especially the long-range leakage caused by negative spectrum, which makes it is difficult to achieve accurate frequency estimation in a short time. In this paper, a complex frequency domain interpolation DFT frequency estimation method based on rectangular window is proposed. Besides, the theoretical variance model of frequency estimator under the influence of noise is established, and the correctness of the variance model is verified by simulation. This algorithm considers the long-range leakage effect caused by the negative spectrum, so it still has a high frequency estimation accuracy when the length of the measurement window is less than 2 fundamental wave cycles. Simulation and experiments show that in the presence of noise and harmonics, even the measurement window is short, the frequency estimation performance of this algorithm is better than the existing frequency estimation algorithms.
Keywords: frequency measurement;Fourier transform;noise;harmonics
2024, 50(5):167-173  收稿日期: 2022-05-16;收到修改稿日期: 2022-07-27
基金项目: 国家电网公司科技项目资助(5216AG21000K)
作者简介: 王海元(1987-),男,湖北武汉市人,副高级工程师,主要从事电能计量采集,电力营销相关工作。
参考文献
[1] 田正其, 欧阳曾恺, 周超, 等. 基于迭代滤波的电网基波与谐波动态频率测量技术[J]. 电测与仪表, 2021, 58(4): 165-170.
TIAN Z Q, OUYANG Z K, ZHOU C, et al.Dynamic frequency measurement technology for fundamental and harmonic waves in power grids based on iterative filtering [J].Electrical Measurement and Instrumentation, 2021, 58 (4): 165-170.
[2] 李恺, 向鑫, 卜文彬, 等. 基于频谱分辨率自适应的双插值DFT谐波分析方法[J]. 电测与仪表, 2021, 58(754): 92-97.
LI K, XIANG X, BU W B, et al. A double interpolation DFT harmonic analysis method based on spectral resolution adaptation[J]. Electrical Measurement and Instrumentation, 2021, 58 (754): 92-97.
[3] 杨静, 熊德智, 王智, 等. 谐波与间谐波对电能计量误差影响研究[J]. 中国测试, 2021, 47(3): 43-48.
YANG J, XIONG D Z, WANG Z, et al. Influence of harmonics and inter-harmonics on electric energy measurement error[J]. China Measurement & Test, 2021,47(3): 43-48.
[4] 舒骁骁, 祝君剑, 朱亮, 等. 计及噪声影响的高准确度迭代滤波电网频率测量方法[J]. 中国测试, 2020, 46(7): 54-59.
SHU X X, ZHU J J, ZHU L, et al. High accuracy iterative filtering frequency measurement method for power system based on noise effects[J]. China Measurement & Test, 2020, 46 (7): 54-59.
[5] 王雅丽, 虞莉娟, 张华军等. 基于自适应陷波器的电网频率估计方法[J]. 电测与仪表, 2018, v.55(701): 121-127.
WANG Y L, YU L J, ZHANG H J, et al.Frequency estimation method for power grid based on adaptive notch filter [J].Electrical Measurement and Instrumentation, 2018, 55 (701): 121-127.
[6] 徐子翼, 张忠立, 王灿, 等. 正弦压力信号数据处理方法研究[J]. 中国测试, 2020, 46(9): 19-25.
XU Z Y, ZHANG Z L, WANG C, et al. Study on processing methods of sinusoidal pressure signal data[J]. China Measurement & Test, 2020, 46(9): 19-25.
[7] 陈勇, 李鹏, 宋树平, 等. 五项最小旁瓣窗插值方法电力谐波参数估计[J]. 自动化仪表, 2017, 38(4): 46-49.
CHEN Y, LI P, SONG S P, et al. Five term minimum sidelobe window interpolation method for estimating power harmonic parameters[J]. Automation Instrumentation, 2017, 38 (4): 46-49.
[8] 王娟, 张尔东, 于广艳. 基于加窗FFT和HWT算法的谐波检测系统设计[J]. 电测与仪表, 2021, 58(7): 189-194.
WANG J, ZHANG E D, YU G Y. Design of harmonic detection system based on windowed FFT and HWT algorithms [J].Electrical Measurement and Instrumentation, 2021, 58 (7): 189-194.
[9] 黄瑞, 肖宇, 刘谋海, 等. 复频谱插值DFT的电力系统低频振荡信号测量方法[J]. 湖南大学学报(自然科学版), 2021, 48(10): 170-177.
HUANG R, XIAO Y, LIU M H, et al. Measurement method for low-frequency oscillation signals in power systems using complex spectrum interpolation DFT[J]. Journal of Hunan University (Natural Science Edition), 2021,48 (10): 170-177.
[10] WANG K, WEN H, XU L, et al. Two points interpolated DFT algorithm for accurate estimation of damping factor and frequency[J]. IEEE Signal Processing Letters, 2021 (99): 1.
[11] BORKOWSKI J, KANIA D, MROCZKA J. Interpolated-DFT-based fast and accurate frequency estimation for the control of power[J]. IEEE Transactions on Industrial Electronics, 2014, 61(12): 7026-7034.
[12] WEN H, LI C, YAO W. Power system frequency estimation of sine-wave corrupted with noise by windowed three-point interpolated DFT[J]. IEEE Transactions on Smart Grid, 2018, 9(5): 5163-5172.
[13] BELEGA D, PETRI D, DALLET D. Frequency estimation of a sinusoidal signal via a three-point interpolated DFT method with high image component interference rejection capability[J]. Digital Signal Processing, 2014, 24: 162-169.
[14] 张金平, 李建立, 段晨. 计及负频率影响的新能源发电低频间谐波检测方法[J]. 电测与仪表, 2020, 57(2): 95-100.
ZHANG J P,LI J L,DUAN C. A method for detecting low-frequency harmonics in new energy generation considering negative frequency effects [J].Electrical Measurement and Instrumentation, 2020, 57 (2): 95-100.
[15] 刘型志, 周全, 张淮清, 等. 基于负频率频谱干扰消除的高精度低频间谐波检测算法[J]. 重庆大学学报, 2020, 43(2): 50-59.
LIU X Z, ZHOU Q, ZHANG H Q, et al. A high-precision low-frequency harmonic detection algorithm based on negative frequency spectrum interference elimination[J]. Journal of Chongqing University, 2020, 43 (2): 50-59.
[16] SUN Y, CHUNGANG Z, XIONG Z. A switch-based interpolated DFT for the small number of acquired sine wave cycles[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65: 1-10.
[17] JIUFEI L, HOU S, LI X, et al. Generalization of interpolation DFT algorithms and frequency estimators with high image component interference rejection[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016.