您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>应变片粘贴因素对压杆测压的影响

应变片粘贴因素对压杆测压的影响

1859    2018-10-29

免费

全文售价

作者:李焰, 张敏, 史国凯

作者单位:西北核技术研究所, 陕西 西安 710024


关键词:应变式压杆;灵敏系数;应变片;弯曲波;标定


摘要:

应变式压杆测压中,需要在杆的适当位置对称粘贴一组应变片,由于杆一般比较细,应变片粘贴的对称性以及附加质量都会对压杆的精确测试带来一定的影响。在直径4 mm压杆的静态和动态标定实验中对该影响进行研究。在实验中观察到弯曲波及对波形平台造成的畸变,给出应变片粘贴位置偏差对测试结果影响的理论估算公式,分析研究不同附加质量情况下的动态波形特征。研究发现,应变片粘贴位置的不对称以及附加质量都会造成压杆测试波形明显畸变,后者还会造成动态灵敏系数的偏大;在尽量去除附加质量时,静态、动态灵敏系数趋于一致。


Influence of stickup factor of strain gauge on pressure bar measurement

LI Yan, ZHANG Min, SHI Guokai

Northwest Institute of Nuclear Technology, Xi'an 710024, China

Abstract: In the pressure measurement of the strain type pressure bar, a group of strain gauges should be attached symmetrically in the proper position of the bar. Because the bar is usually relatively thin, the symmetry and the additional mass of the strain gauge will have a certain effect on the accurate test of the pressure bar. The effect is studied in the static and dynamic calibration experiments of a 4mm diameter pressure bar. In the experiment, the bending wave and the distortion of the wave platform is observed. The theoretical estimation formula of the influence of the position deviation of the strain gauge on the test results is given, and the characteristics of the dynamic waveform under the condition of different additional mass are analyzed and studied. It is found that the asymmetry of the stickup position of the strain gauge and the additional mass will all cause the obvious distortion of the test waveform, and the latter will cause a greater dynamic sensitivity coefficient. It is also found that the static and dynamic sensitivity coefficients tend to be consistent when the additional mass is removed as much as possible.

Keywords: strain type pressure bar;sensitivity coefficient;strain gauge;bending wave;calibration

2018, 1900-02-12(10): 130-133,144  收稿日期: 2018-05-11;收到修改稿日期: 2018-06-16

基金项目: 

作者简介: 李焰(1969-),男,四川峨眉山市人,副研究员,博士,从事爆炸力学测试技术研究

参考文献

[1] 朱明武, 梁人杰, 柳光辽, 等. 动压测量[M]. 北京:国防工业出版社, 1983:42-89.
[2] 张挺. 爆炸冲击波测量技术[M]. 北京:国防工业出版社, 1984:46-48
[3] JONES I R. Beryllium pressure bar having submicrosecond risetime[J]. The Review of Scientific Instruments, 1966, 37(8):1059-1061.
[4] DICK R D, WILLIAMS J D, WANG X J. Measurement of pressurefrom explosives in a closed chamber and the free field:ARL-CR-309[R]. 1996.
[5] 范良藻, 李国彬, 李广达. 标定激波管的激波前沿构造和毫微秒传感器[J]. 力学学报, 1986, 18(6):558-560.
[6] 王占江. 岩土中填实与空腔解耦爆炸的化爆模拟实验研究[D]. 长沙:国防科学技术大学, 2003.
[7] 胡永乐, 林俊德, 金飞华, 等. 应变式压杆压力传感器在冲击波载荷测试中的应用[J]. 实验力学, 2006, 21(5):547-552.
[8] 张德志, 李焰, 钟方平, 等. 冲击波壁面反射压力的压杆测试法[J]. 兵工学报, 2007, 28(10):1256-1260.
[9] 石培杰, 叶湘滨, 胡永乐. 压杆应变式压力传感器在爆炸冲击波载荷测试中的应用[J]. 振动与冲, 2007, 26(4):126-128.
[10] 王长利, 王等旺, 李焰, 等. 半导体应变片在压杆测压系统中的应用[C]//第四届全国爆炸力学实验技术学术会议, 2006.
[11] 杨军, 李焰, 张德志, 等. 光子多普勒测速仪与压杆相结合的冲击波反射压力测试技术[J]. 兵工学报, 2017, 38(7):1368-74.
[12] 宜晨虹, 胡杨. 变截面压杆对应变式压杆压力传感器测量影响研究[J]. 传感器与微系统, 2012, 31(12):73-75.