您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>金属板在水下爆炸加载下的动态响应研究进展

金属板在水下爆炸加载下的动态响应研究进展

2591    2018-10-29

免费

全文售价

作者:郑监, 卢芳云, 李翔宇

作者单位:国防科技大学, 湖南 长沙 410073


关键词:水下爆炸;试验;金属板;无量纲分析


摘要:

金属板是舰船等大型工程结构的最基本结构元素,其抗爆性能、爆炸响应及破坏特性一直都是人们关注的基本问题。该文综述金属板的水下爆炸加载试验技术和动态响应研究现状。介绍非装药水下冲击试验加载方法、水箱/开放水域爆炸加载方法和锥形激波管爆炸加载方法的基本原理和特点,分析各加载方法的优点和局限性。简要讨论水下爆炸冲击载荷作用下金属薄板的失效模式,及其与空中爆炸的异同。总结处理相似实验的无量纲分析方法,给出3类主要的中心挠度预测公式,并对其适用性进行讨论。该文可以为水下爆炸实验研究提供一定的参考。


Research progress on dynamic response of metal plate in underwater explosion loading

ZHENG Jian, LU Fangyun, LI Xiangyu

National University of Defense Technology, Changsha 410073, China

Abstract: Metal plate is the most basic structural element of large engineering structures such as ships, and its anti-explosion performance and explosion response and damage characteristics have always been the basic problems of people's attention. In this paper, the underwater explosive loading techniques and its dimensionless analysis are reviewed. This paper introduces the basic principle and characteristics of three underwater loading techniques for non-charged underwater impact loading, explosion loading in water tank/open water and conical shock tube explosion loading. The advantages and limitations of each loading technique are discussed. The failure modes of thin plate under underwater explosion and its similarities and differences between air blast loading are briefly discussed. Summarized the dimensionless analysis methods for similar experiments, and three kinds of central deflection prediction formula are given, and their applicability are discussed.This may provide reference for underwater explosion experimental study.

Keywords: underwater explosion;experimental;metal plate;dimensionless analysis

2018, 1900-02-12(10): 20-30  收稿日期: 2018-05-04;收到修改稿日期: 2018-06-11

基金项目: 国家自然科学基金(11872376)

作者简介: 郑监(1993-),男,湖北荆州市人,博士研究生,研究方向为炸爆力学

参考文献

[1] JONES N. Structural impact.[M] UK:Cambridge University Press. 1989.
[2] JONES N. Recent studies on the dynamic plastic behavior of structures[J]. Applied Mechanics Reviews, 1989, 238(42):95-115.
[3] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading-A review Part I:Theoretical considerations[J]. International Journal of Impact Engineering, 1989, 8(2):159-170.
[4] NURICK G N, MARTIN J B. Deformation of thin plates subjected to impulsive loading-a review Part Ⅱ:Experimental studies[J]. International Journal of Impact Engineering, 1989, 8(2):171-186.
[5] RAJENDRAN R, LEE J M. Blast loaded plates[J]. Marine Structures, 2009, 22(2):99-127.
[6] 蒋志刚, 白志海. 金属薄板与加筋板爆炸冲击响应研究进展[J]. 振动与冲击, 2010, 29(11):41-46.
[7] YUEN C K, NURICK G N, et al. Deformation of thin plates subjected to impulsive load:Part Ⅲ-an update 25 years on[J]. International Journal of Impact Engineering, 2016, 107:108-117.
[8] MINSHALL S. Properties of elastic and plastic waves determined by pin contactors and crystals[J]. Journal of Applied Physics, 1955, 26(4):463-469.
[9] 朱凌, 段沐德, 黄骏德. 固支方板对水下爆炸的塑性动力响应[J]. 海军工程大学学报, 1987(3):1009-3486.
[10] RAMAJEYATHILAGAM K, WENDHAN C P. Deformation and rupture of thin rectangular plates subjected to underwater shock[J]. International Journal of Impact Engineering, 2004, 30(6):699-719.
[11] KEIL A H. The response of ships to underwater explosion[J]. Trans Soc Naval Architects Marine Eng, 1961, 69:366-410.
[12] RAJENDRAN R. Numerical simulation of response of plane plates subjected to uniform primary shock loading of non-contact underwater explosion[J]. Materials & Design, 2009, 30(4):1000-1007.
[13] HUNG C F, HSU P Y, HWANG-FUU. Elastic shock response of an air-backed plate to underwater explosion[J]. International Journal of Impact Engineering, 2005, 31(2):151-168.
[14] LEE J J, SMITH M J, HUANG J, et al. Deformation and rupture of thin steel plates due to cumulative loading from underwater shock and bubble collapse[J]. Shock and Vibration, 2011, 18(3):459-470.
[15] WADLEY H, DHARMASENA K, CHEN Y, et al. Compressive response of multilayered pyramidal lattices during underwater shock loading[J]. International Journal of Impact Engineering, 2008, 35(9):1102-1114.
[16] WADLEY H N G, DHARMASENA K P, QUEHEILLALT D T, et al. Dynamic compression of square honeycomb structures during underwater impulsive loading[J]. Journal of Mechanics of Materials and Structures, 2007, 2(10):2025-2048.
[17] XIAO F, CHEN Y, WANG Y, et al. Experimental research on the dynamic response of floating structures with coatings subjected to underwater explosion[J]. Shock and Vibration, 2014, 2014(12):1-13.
[18] WANG H, ZHU X, CHENG Y S, et al. Experimental and numerical investigation of ship structure subjected to close-in underwater shock wave and following gas bubble pulse[J]. Marine Structures, 2014, 39:90-117.
[19] ZHANG Z, WANG Y, ZHAO H, et al. An experimental study on the dynamic response of a hull girder subjected to near field underwater explosion[J]. Marine Structures, 2015, 44:43-60.
[20] FILLER W S. Propagation of shock waves in a hydrodynamic conical shock tube[J]. Physics of Fluids, 1964, 7(5):664-667.
[21] COOMBS A, THORNHILL C K. An underwater explosive shock gun[J]. Journal of Fluid Mechanics, 1967, 29(2):373-383.
[22] ZALESAK J F, POCHE L B. The shock test facility:an explosive-driven, water-filled conical shock tube[J]. 60th Shock and Vibration Symposium, 1989, 3:73-76.
[23] HESHMATI M, ZAMANI J, MOZAFARI A. Experimental and numerical study of isotropic circular plates' response to underwater explosive loading, created by conic shock tube[J]. Materialwissenschaft Und Werkstofftechnik, 2017, 48(2):106-121.
[24] HESHMATI M, ZAMANI J, et al. The experimental and numerical impacts of geometrical parameters of conical shock tube on the function, maximum pressure and generative impulses to expose equivalent mass and behavioral equation[J]. Materialwissenschaft Und Werkstofftechnik, 2016, 47(7):623-634.
[25] LEBLANC J, GARDNER N, SHUKLA A. Effect of polyurea coatings on the response of curved E-Glass/Vinyl ester composite panels to underwater explosive loading[J]. Composites Part B Engineering, 2013, 44(1):565-574.
[26] LEBLANC J, SHUKLA A. Dynamic response of curved composite panels to underwater explosive loading:Experimental and computational comparisons[J]. Composite Structures, 2011, 93(11):3072-3081.
[27] LEBLANC J, SHUKLA A. Response of E-glass/vinyl ester composite panels to underwater explosive loading:Effects of laminate modifications[J]. International Journal of Impact Engineering, 2011, 38(10):796-803.
[28] DESHPANDE V S, HEAVER A, FLECK N A. An underwater shock simulator[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2006, 462(2067):1021-1041.
[29] KAZEMAHVAZI S. Dynamic failure of clamped circular plates subjected to an underwater shock[J]. Journal of Mechanics of Materials and Structures, 2007, 2(10):2007-2023.
[30] SCHIFFER A, TAGARIELLI V L. The response of rigid plates to blast in deep water:fluid-structure interaction experiments[J]. Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2012, 468(2145):2807-2828.
[31] HUANG W, JIA B, ZHANG W et al. Dynamic failure of clamped metallic circular plates subjected to underwater impulsive loads[J]. International Journal of Impact Engineering, 2016, 94:96-108.
[32] HUANG W, ZHANG W, HUANG X, et al. Dynamic response of aluminum corrugated sandwich subjected to underwater impulsive loading:Experiment and numerical modeling[J]. International Journal of Impact Engineering, 2017, 109:78-91.
[33] REN P, ZHOU J, TIAN A, et al. Experimental and numerical investigation of the dynamic behavior of clamped thin panel subjected to underwater impulsive loading[J]. Latin American Journal of Solids and Structures, 2017, 14(6):978-999.
[34] ESPINOSA H D, LEE S, MOLDOVAN N. A novel fluid structure interaction experiment to investigate deformation of structural elements subjected to impulsive loading[J]. Experimental Mechanics, 2006, 46(6):805-824.
[35] MORI L F, LEE S F, XUE Z Y, et al. Deformation and fracture modes of sandwich structures subjected to underwater impulsive loads[J]. Journal of Mechanics of Materials and Structures, 2007, 2(10):1981-2006.
[36] MORI L F, QUEHEILLALT D T, WADLEY H N G, et al. Deformation and failure modes of i-core sandwich structures subjected to underwater impulsive loads[J]. Experimental Mechanics, 2009, 49(2):257-275.
[37] WEI X, LATOURTE F, FEINBERG Z, et al. Design and identification of high performance steel alloys for structures subjected to underwater impulsive loading[J]. International Journal of Solids and Structures, 2012, 49(13):1573-1587.
[38] REN P, ZHANG W. Underwater shock response of air-backed thin aluminum alloy plates:An experimental and numerical study[C]//Conference of the APS Topical Group on Shock Compression of Condensed Matter held in conjunction with the 24th Biennial Intl, 2014:1-19.
[39] XIANG D L, RONG J, HE X. Experimental investigation of dynamic response and deformation of aluminium honeycomb sandwich panels subjected to underwater impulsive loads[J]. Shock and Vibration, 2015:1-13.
[40] MENKES S B, OPAT H J. Broken beams:Tearing and shear failures in explosively loaded clamped beams[J]. Experimental Mechanics, 1973, 13(11):480-486.
[41] JONES N. Plastic failure of ductile beams loaded dynamically[J]. Journal of Engineering for Industry, 1976, 98(1):131-136.
[42] TEELING-SMITH R, NURICK G N. The deformation and tearing of thin circular plates subjected to impulsive loads[J]. International Journal of Impact Engineering, 1991, 11(1):77-91.
[43] OLSON M D, NURICK G N, FAGNAN J R. Deformation and rupture of blast loaded square plates-predictions and experiments[J]. International Journal of Impact Engineering, 1993, 13(2):279-291.
[44] NURICK G N, et al. Deformation and tearing of blast-loaded stiffened square plates[J]. International Journal of Impact Engineering, 1995, 16(2):273-291.
[45] NURICK G N, GELMAN M E, MARSHALL N S. Tearing of blast loaded plates with clamped boundary conditions[J]. International Journal of Impact Engineering, 1996, 18(18):803-827.
[46] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads-an experimental study[J]. International Journal of Impact Engineering, 1996, 18(1):99-116.
[47] RILEY M J, et al. Failure mode transition in airbacked plates from near contact underwater explosions[J]. Shock and Vibration, 2010, 17:723-739.
[48] JACOB N, NURICK G N, LANGDON G S. The effect of stand-off distance on the failure of fully clamped circular mild steel plates subjected to blast loads[J]. Engineering Structures, 2007, 29:2723-2736.
[49] JOHNSON W. Impact strength of materials[M]. London:Hodder Arnold, 1972.
[50] RAJENDRAN R, NARASIMHAN, K. Performance evaluation of HSLA steel subjected to underwater explosion[J]. Journal of Materials Engineering and Performance, 2001, 10(1):66-74.
[51] RAJENDRAN R, NARASIMHAN, K. Deformation and fracture behaviour of plate specimens subjected to underwater explosion-a review[J]. International Journal of Impact Engineering, 2006, 32(12):1945-1963.
[52] NURICK G N, SHAVE G C. The deformation and tearing of thin square plates subjected to impulsive loads-An experimental study[J]. International Journal of Impact Engineering, 1996, 18(1):99-116.
[53] HENCHIE T F, YUEN S C K, NURICK G N, et al. The response of circular plates to repeated uniform blast loads An experimental and numerical study[J]. International Journal of Impact Engineering, 2014, 74:36-45.
[54] YAO S J, ZHANG D, LU F Y. Dimensionless numbers for dynamic response analysis of clamped square plates subjected to blast loading[J]. Archive of Applied Mechanics, 2015, 85(6):735-744.
[55] JACOB N, YUEN S C K, NURICK G N, et al. Scaling aspects of quadrangular plates subjected to localised blast loads-experiments and predictions[J]. International Journal of Impact Engineering, 2004, 30(8/9):1179-1208.