您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于石墨相碳化氮的光催化降解有机污染物研究进展

基于石墨相碳化氮的光催化降解有机污染物研究进展

2324    2018-11-27

免费

全文售价

作者:朱派金1, 张艺莹1, 许淑霞2

作者单位:1. 成都理工大学材料与化学化工学院, 四川 成都 610059;
2. 成都理工大学环境学院, 四川 成都 610059


关键词:光催化降解;石墨相碳化氮;有机污染物


摘要:

环境污染是目前人类面临的严重问题,半导体光催化技术是直接利用太阳能降解有机污染物的方法,有很大的应用潜力。然而大多数半导体光催化剂只能吸收紫外光,对太阳光利用率较低。石墨相碳化氮(g-C3N4)是一种新兴的半导体聚合物材料,无毒副作用、易于制备、能够吸收可见光,受到科研工作者的广泛关注。该文针对g-C3N4及其改性的g-C3N4光催化降解有机污染物应用进行总结和讨论,并对未来的研究方向进行展望。


Progress in graphitic carbon nitride based nanomaterials for photodegradation of organic contaminants

ZHU Paijin1, ZHANG Yiying1, XU Shuxia2

1. College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China;
2. College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China

Abstract: Environmental pollution is a serious problem people face recently. Semiconductor photocatalysis is a potential technology which could directly utilize solar energy to degrade organic pollutants. However, most semiconductor photocatalysts only absorb ultraviolet light and have low utilization efficiency of sunlight. Graphitic carbon nitride (g-C3N4) is an emerging semiconductor material with advantages of no-toxicity and side effects, easy preparation and visible light absorption which attract wide attention of researchers. In this paper, the applications of g-C3N4 and modified g-C3N4 in photocatalytic degradation of organic pollutants are summarized. In addition, the future researches of g-C3N4 based degradation technology are prospected.

Keywords: photodegradation;graphitic carbon nitride;organic contaminants

2018, 44(11): 135-141  收稿日期: 2018-06-12;收到修改稿日期: 2018-07-25

基金项目: 中国博士后科学基金特别资助项目(2016T90839)

作者简介: 朱派金(1994-),男,四川资中县人,硕士研究生,专业方向为环境监测

参考文献

[1] AHMED M B, ZHOU J L, HUU HAO N, et al. Progress in the biological and chemical treatment technologies for emerging contaminant removal from wastewater:a critical review[J]. Journal of Hazardous Materials, 2017(323):274-298
[2] XU B, AHMED M B, ZHOU J L, et al. Photocatalytic removal of perfluoroalkyl substances from water and wastewater:mechanism, kinetics and controlling factors[J]. Chemosphere, 2017(189):717-729
[3] HE H Y. Facile synthesis of Bi2S3 nanocrystalline-modified TiO2:Fe nanotubes hybrids and their photocatalytic activities in dye degradation[J]. Particulate Science and Technology, 2017, 35(4):410-417
[4] KONYAR M, YILDIZ T, AKSOY M, et al. Reticulated ZnO photocatalyst:efficiency enhancement in degradation of acid red 88 azo dye by catalyst surface cleaning[J]. Chemical Engineering Communications, 2017, 204(6):705-710
[5] ZHOU L, ZHANG W, CHEN L, et al. A novel ternary visible-light-driven photocatalyst AgCl/Ag3PO4/g-C3N4:synthesis, characterization, photocatalytic activity for antibiotic degradation and mechanism analysis[J]. Catalysis Communications, 2017(100):191-195
[6] ATHANASEKOU C P, LIKODIMOS V, FALARAS P. Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water[J]. Journal of Environmental Chemical Engineering, 2018[2018-06-03].https://doi.org/10.1016/j.jece.2018.07.026
[7] Teter D M, Hemley R J. Low-compressibility carbon nitrides[J]. Science, 1996, 271(5245):53-55
[8] KOMATSU T, NAKAMURA T. Polycondensation/pyrolysis of tris-s-triazine derivatives leading to graphite-like carbon nitrides[J]. J Mater Chem, 2000, 11(2):474-8
[9] PATNAIK S, MARTHA S, ACHARYA S, et al. An overview of the modification of g-C3N4 with high carbon containing materials for photocatalytic applications[J]. Inorganic Chemistry Frontiers, 2016, 3(3):336-347
[10] SHI L, WANG F, LIANG L, et al. In site acid template induced facile synthesis of porous graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Catalysis Communications, 2017(89):129-32
[11] WEN J, XIE J, CHEN X, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surface Science, 2017(391):72-123
[12] ZHU B, ZHANG J, JIANG C, et al. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst[J]. Applied Catalysis B-Environmental, 2017(207):27-34
[13] DONG F, ZHAO Z, XIONG T, et al. In Situ Construction of g-C3N4/g-C3N4 Metal-Free heterojunction for enhanced visible-light photocatalysis[J]. ACS Applied Materials & Interfaces, 2013, 5(21):11392-11401
[14] CAO S, LOW J, YU J, et al. Polymeric photocatalysts based on graphitic carbon nitride[J]. Advanced Materials, 2015, 27(13):2150-2176
[15] MAMBA G, MISHRA A K. Graphitic carbon nitride (g-C3N4) nanocomposites:a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B-Environmental, 2016(198):347-377
[16] JIN R, HU S, GUI J, et al. A convenient method to prepare novel rare earth metal Ce-doped carbon nitride with enhanced photocatalytic activity under visible light[J]. Bulletin of the Korean Chemical Society, 2015, 36(1):17-23
[17] WANG S, LI D, SUN C, et al. Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation[J]. Applied Catalysis B-Environmental, 2014(144):885-892
[18] MA L, HU S, LI P, et al. In situ synthesis of sulfur doped carbon nitride with enhanced photocatalytic performance using DBD plasma treatment under H2S atmosphere[J]. Journal of Physics and Chemistry of Solids, 2018(118):166-171
[19] LI D-F, HUANG W-Q, ZOU L-R, et al. Mesoporous g-C3N4 nanosheets:synthesis, superior adsorption capacity and photocatalytic activity[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(8):5502-5510
[20] LIANG Q, JIN J, LIU C, et al. Hydrothermal fabrication of α-SnWO4/g-C3N4 heterostructure with enhanced visible-light photocatalytic activity[J]. Journal of Materials Science Materials in Electronics, 2017, 28(15):11279-11283
[21] 王辉, 张晓东, 谢毅. 聚合物氮化碳材料光激发过程研究进展[J]. 无机化学学报, 2017, 33(11):1897-1913
[22] XU B, AHMED M B, ZHOU J L, et al. Graphitic carbon nitride based nanocomposites for the photocatalysis of organic contaminants under visible irradiation:progress, limitations and future directions[J]. The Science of the total environment, 2018(633):546-559
[23] DONG F, WU L, SUN Y, et al. Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts[J]. Journal of Materials Chemistry, 2011, 21(39):15171
[24] JI H, CHANG F, HU X, et al. Photocatalytic degradation of 2, 4, 6-trichlorophenol over g-C3N4 under visible light irradiation[J]. Chemical Engineering Journal, 2013(218):183-190
[25] FANG S, LV K L, LI Q, et al. Effect of acid on the photocatalytic degradation of rhodamine B over g-C3N4[J]. Applied Surface Science, 2015(358):336-342
[26] HU S, LI F, FAN Z, et al. Band gap-tunable potassium doped graphitic carbon nitride with enhanced mineralization ability[J]. Dalton Transactions, 2015, 44(3):1084-1092
[27] ZHANG M, BAI X, LIU D, et al. Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position[J]. Applied Catalysis B-Environmental, 2015(164):77-81
[28] TONDA S, KUMAR S, KANDULA S, et al. Fe-doped and-mediated graphitic carbon nitride nanosheets for enhanced photocatalytic performance under natural sunlight[J]. Journal of Materials Chemistry A, 2014, 2(19):6772-6780
[29] WANG Y, LI Y, BAI X, et al. Facile synthesis of Y-doped graphitic carbon nitride with enhanced photocatalytic performance[J]. Catalysis Communications, 2016(84):179-182
[30] MU OZ-BATISTA M J, FONTELLES-CARCELLER O, FERRER M, et al. Disinfection capability of Ag/g-C3N4 composite photocatalysts under UV and visible light Illumination[J]. Applied Catalysis B-Environmental, 2016, 183(1):86-95
[31] MO Z, BAI X, DI L, et al. Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position[J]. Applied Catalysis B-Environmental, 2015(164):77-81
[32] HU S, JIN R, LU G, et al. The properties and photocatalytic performance comparison of Fe-doped g-CN and FeO/g-CN composite catalysts[J]. Rsc Advances, 2014, 4(47):24863-24869
[33] RUIRUI J, SHAOZHENG H, JIANZHOU G, et al. A convenient method to prepare novel rare earth metal Ce-doped carbon nitride with enhanced photocatalytic activity under visible light[J]. Bulletin of the Korean Chemical Society, 2015, 36(1):17-23
[34] YANG Y, GUO Y, LIU F, et al. Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst[J]. Applied Catalysis B-Environmental, 2013(142):828-837
[35] MA X, LV Y, XU J, et al. A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements:a first-principles study[J]. Journal of Physical Chemistry C, 2012, 116(44):23485-23493
[36] ZHANG L, CHEN X, GUAN J, et al. Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity[J]. Materials Research Bulletin, 2013, 48(9):3485-3491
[37] LI Y, WU S, HUANG L, et al. Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity[J]. Materials Letters, 2014(137):281-284
[38] YANG B, ZHOU H, ZHANG X, et al. Electron spin-polarization and band gap engineering in carbon-modified graphitic carbon nitrides[J]. Journal of Materials Chemistry C, 2015, 3(41):10886-10891
[39] ZHANG M, XU J, ZONG R, et al. Enhancement of visible light photocatalytic activities via porous structure of g-C3N4[J]. Applied Catalysis B-Environmental, 2014(147):229-235
[40] ZHANG S B, LI M, QIU W J, et al. Super small polymeric carbon nitride nanospheres with core-shell structure for photocatalysis[J]. ChemistrySelect, 2017, 2(32):10580-10585
[41] LI Y, RUAN Z, HE Y, et al. In situfabrication of hierarchically porous g-C3N4 and understanding on its enhanced photocatalytic activity based on energy absorption[J]. Applied Catalysis B-Environmental, 2018(236):64-75
[42] XUETENG, PA NG, MINGYUAN, et al. Confined reaction inside nanotubes:new approach to mesoporous g-C3N4 photocatalysts[J]. 纳米研究(英文版), 2017, 10(11):3638-3647
[43] DONG Y, WANG D, ZHANG H, et al. Morphological control of tubular g-C3N4 and their visible-light photocatalytic properties[J]. Materials Letters, 2017(196):100-103
[44] ZHANG J, WANG B, WANG X. Carbon ntride polymeric semiconductor for photocatalysis[J]. Progress in Chemistry, 2014, 26(1):19-29
[45] LI G, NIE X, GAO Y, et al. Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation?-implications of persistent toxic intermediates[J]. Applied Catalysis B-Environmental, 2016(180):726-732
[46] ZHANG J, WANG Y, HU S. Simulated solar light responsive carbon nitride/TiO2 nanofiber heterojunction photocatalyst:synthesis, characterization, and photocatalytic performance[J]. Bulletin of the Korean Chemical Society, 2015, 36(1):333-339
[47] HOU Y, LAURSEN A B, ZHANG J, et al. Layered nanojunctions for hydrogen-evolution catalysis[J]. Angewandte Chemie, 2013, 125(13):3621-3625
[48] ZHANG J, GRZELCZAK M, HOU Y, et al. Photocatalytic oxidation of water by polymeric carbon nitride nanohybrids made of sustainable elements[J]. Chemical Science, 2012, 3(2):443-446
[49] QI Y R, LIANG Q H, LV R T, et al. Synthesis and photocatalytic activity of mesoporous g-C3N4/MoS2 hybrid catalysts[J]. Royal Society Open Science, 2018, 5(5):9
[50] TIONG P, LINTANG H O, ENDUD S, et al. Improved interfacial charge transfer and visible light activity of reduced graphene oxide-graphitic carbon nitride photocatalysts[J]. Rsc Advances, 2015, 5(114):94029-94039