您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>微波消解-原子荧光光谱法测定脱硝催化剂中微量砷

微波消解-原子荧光光谱法测定脱硝催化剂中微量砷

1836    2018-11-27

免费

全文售价

作者:闫月娥

作者单位:攀枝花学院 国家钒钛检测重点试验室, 四川 攀枝花 617000


关键词:脱硝催化剂;二氧化钛;砷;氢化物-原子荧光法


摘要:

采用酒石酸+氢氟酸+硝酸体系微波消解处理脱硝催化剂试样,以氢化物发生-原子荧光光谱法(HG-AFS)对其中的砷进行测定。试验探讨试样消解方法、消解体系各酸用量、仪器测量条件选择以及基体和共存元素的干扰。试验结果表明,试样在1.0 mL酒石酸+2.0 mL氢氟酸+3.0 mL硝酸的混合消解体系中消解完全,在经优化仪器分析参数后,校准溶液及试样溶液均获得一个完整正态峰型,达到最佳积分效果。通过干扰试验得知,基体钛对砷测定无干扰,样品溶液中100 mg/L以内的共存元素钼、钨、硅、钒、钡、镁、钙不干扰砷的测定。砷的浓度在0~20 g/L范围内线性相关系数为0.999 5,方法检出限为0.04 g/g。方法用于实际样品分析,相对标准偏差(RSD,n=5)小于3.0%,加标回收率为95%~103%。


Determination of trace arsenic in denitrification catalyst by microwave digestion-atomic fluorescence spectrometry

YAN Yuee

State Key Laboratory of Vanadium and Titanium Testing, Panzhihua University, Panzhihua 617000, China

Abstract: The sample of denitrification catalyst was digested by tartaric acid, hydrofluoric acid and nitric acid under microwave irradiation, the arsenic in the catalyst was determined by hydride generation-atomic fluorescence spectrometry (HG-AFS). The sample digestion method, the amount of acid in the digestion system, the selection of measuring conditions and the interference of matrix and coexisting elements were discussed. The results showed that the sample was completely digested in the mixed digestion system of 1.0 mL tartaric acid+2.0 mL hydrofluoric acid+3.0 mL nitric acid. After optimizing the analytic parameters of the instrument, a complete normal peak shape was obtained in both the calibrated solution and the sample solution, and the best integral effect was achieved. The interference test showed that the matrix titanium did not interfere with the determination of arsenic, and the coexisting elements of molybdenum, tungsten, silicon, vanadium, barium, magnesium and calcium did not interfere with the determination of arsenic. The linear correlation coefficient of arsenic concentration in the range of 0-20 μg/L is 0.999 5, and the detection limit is 0.04 μg/g. The relative standard deviation (RSD, n=5) was less than 3.0% and the recovery was 95%-103%.

Keywords: denitrification catalyst;titanium dioxide;arsenic;hydride atomic fluorescence spectrometry

2018, 44(11): 88-91,156  收稿日期: 2018-09-05;收到修改稿日期: 2018-10-25

基金项目: 

作者简介: 闫月娥(1981-),女,河南周口市人,工程师,硕士,主要从事金属材料、矿产品检验工作

参考文献

[1] MARIAM S, STEFANIE H, VERA S, et al. Hybrid catalysts for the selective catalytic reduction (SCR) of NO by NH3 On the role of fast SCR in the reaction network[J]. Applied Catalysis B:Environmental, 2016, 199:433-438
[2] BENDRICH M, SCHUEUER A, HAYES R E, et al. Unified mechanistic model for Standard SCR, Fast SCR, and NO2 SCR over a copper chabazite catalyst[J]. Applied Catalysis B:Environmental, 2018, 222:76-87
[3] 黄力, 陈志平, 王虎, 等. 钒钛系SCR脱硝催化剂砷中毒研究进展[J]. 能源环境保护, 2016(4):5-8
[4] KONG M,LIU Q C, WANG X Q, et al. Performance impact and poisoning mechanism of arsenic over commercial V2O5-WO3/TiO2 SCR catalyst[J]. Catalysis Communications, 2015, 72:121-126
[5] LI X, LI J H, PENG Y, et al. Mechanism of arsenic poisoning on SCR catalyst of CeW/Ti and its novel efficient regeneration method with hydrogen[J]. Applied Catalysis B:Environmental, 2016, 184:246-257
[6] 王平, 钱利科, 姚友工. 燃煤电厂砷中毒SCR脱硝催化剂再生技术研究[J]. 四川理工学院学报(自然科学版), 2016(5):9-13
[7] 晏敏, 赵凯, 朱跃. 燃煤电厂运行中脱硝催化剂的性能检测评价与分析[J]. 中国电力, 2016(7):168-172
[8] 梁有, 方丹, 辛朝. 氢化物发生-原子吸收分光光度法检测环境样品中砷[J]. 化学工程师, 2016(12):34-37
[9] 祝正辉. 原子荧光光谱法测定土壤中的砷和汞[J]. 理化检验(化学分册), 2015(7):952-954
[10] 黄玲, 蔡宗平, 方红生, 等. 微波消解ICP-OES法测定阳极泥中的砷镍铜[J]. 湿法冶金, 2017(3):247-250
[11] 冯秀芳. 微波消解-ICP-MS法同时测定小麦籽粒中的铅、镉、砷[J]. 湿法冶金, 2016(3):268-270
[12] 王振, 王文芳, 钱钊, 等. 微波消解-石墨炉原子吸收分光光度法测定防风中的砷和铅[J]. 哈尔滨医科大学学报, 2016(6):508-512
[13] 雷美康, 彭芳, 曹培林, 等. 微波消解-氢化物发生原子荧光光谱法同时测定钨矿中砷汞[J]. 冶金分析, 2013(4):44-47
[14] 吴翠蓉, 尚素微, 柴振林, 等. 微波消解-原子荧光法测定肥料中砷汞含量[J]. 中国土壤与肥料, 2013(6):101-104
[15] 李颜君, 杨占菊, 董更福, 等. 氢化物发生-原子荧光光谱法同时测定铅锭中砷锑[J]. 冶金分析, 2017(11):75-79