您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>土壤和沉积物中汞含量测定及应用

土壤和沉积物中汞含量测定及应用

2023    2018-11-27

免费

全文售价

作者:张倩1,2, 韩贵琳1, 阳昆桦1, 梁涛2, 刘剑3, 胡越2

作者单位:1. 中国地质大学(北京), 北京 100083;
2. 中国科学院地理科学与资源研究所, 北京 100101;
3. 北京市营养源研究所, 北京 100069


关键词:RA-915M测汞仪;固体直接进样法;汞含量;土壤;沉积物


摘要:

土壤和沉积物是汞的生物地球化学循环中重要的汇和源。采用RA-915M测汞仪固体模块的直接进样法,建立土壤和沉积物中汞含量的一种快速测试分析方法。该方法无需对固体样品进行消解、定容等前处理操作,具有快速、准确、分析成本低等特点。探讨该方法的检出限、精密度和加标回收率,结果显示方法检出限为0.132 ng/g,相对标准偏差小于 5%(n=5),加标回收率为92.8%~106%。为进一步检验方法的可靠性,对土壤和沉积物样品分别使用RA-915M测汞仪固体模块、液体模块和原子荧光光度计测试。结果显示,固体直接进样法操作简便、可信度高,更适合测定土壤和沉积物中汞的含量。利用该方法对洞庭湖沉积物和北京农田土壤汞含量进行研究,研究结果与前人研究相符,表明该方法准确、高效,值得推广利用。


Determination and application of mercury in soil and sediment

ZHANG Qian1,2, HAN Guilin1, YANG Kunhua1, LIANG Tao2, LIU Jian3, HU Yue2

1. China University of Geosciences(Beijing), Beijing 100083, China;
2. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
3. Beijing Institute of Nutritional Resources, Beijing 100069, China

Abstract: Soil and sediment are important sinks and sources in the biogeochemical cycle of mercury. A rapid method for determination and analysis of mercury content in soil and sediment was established by direct injection of solid module of RA-915M mercury analyzer. The method was fast, accurate, low cost and without pre-treatment procedures including acid digestion, constant volume, etc. The detection limit, precision and the recoveries of the standard addition of this method were investigated. The result showed that the detection limit was 0.132 ng/g. The relative standard deviation (RSD) was lower than 5% (n=5) and the recoveries of standard addition were 92.8%-106%. To validate the reliability of this method, we compared the results with other two analytical methods including atomic fluorescence spectrometer and mercury analyzer with liquid accessory after microwave digestion, and the results show that the method is simple, reliable and more suitable for the determination of mercury in soil and sediment. The mercury content in Dongting Lake sediments and Beijing farmland soils was studied by this method. The results are in agreement with previous studies. It shows that this method is accurate and efficient, and it is worth popularizing and utilizing.

Keywords: RA-915M mercury analyzer;direct determination of mercury in solid;mercury content;soil;sediment

2018, 44(11): 66-70  收稿日期: 2018-02-14;收到修改稿日期: 2018-04-19

基金项目: 国家自然科学基金(41325010,41661144029)

作者简介: 张倩(1984-),女,山东莱芜市人,博士研究生,主要从事环境地球化学研究

参考文献

[1] 冯新斌, 仇广乐, 付学吾, 等. 环境汞污染[J]. 化学进展, 2009, 21(Z1):436-457
[2] NIU S P, GAO L M, ZHAO J J. Distribution and risk assessment of heavy metals in the Xinzhuangzi reclamation soil from the huainan coal mining area, China[J]. Human and Ecological Risk Assessment, 2015, 21(4):900-912
[3] 刘鸿雁, 周俊, 朱恒亮, 等. 贵州省不同类型污染区农业土壤中汞的分布及污染评价[J]. 环境化学, 2014, 33(4):691-692
[4] YE X, XIAO W, ZHANG Y, et al. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China[J]. Environmental Monitoring & Assessment, 2015, 187(6):378
[5] WANG Y, YANG L, KONG L, et al. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, East China[J]. Catena, 2015, 125(2):200-205
[6] MALCZYK E A, BRANFIREUN B A. Mercury in sediment, water, and fish in a managed tropical wetland-lake ecosystem[J]. Science of the Total Environment, 2015(524):260-268
[7] 曹霏霏, 杨丽原, 庞绪贵, 等. 山东南四湖沉积物中汞的污染现状及迁移研究[J]. 环境科学, 2015, 36(5):1615-1621
[8] 苏明跃, 陈广志, 王晶, 等. 水浴消解-顺序注射-氢化物发生原子荧光光谱法测定铁矿石中砷和汞[J]. 岩矿测试, 2011, 30(2):210-213
[9] 吕悦. 原子荧光光谱法对土壤中汞的测定[J]. 农业与技术, 2015, 35(6):5
[10] 赵小学, 赵宗生, 王玲玲. 水中汞的电感耦合等离子体-质谱法测定[J]. 中国测试, 2013, 39(6):50-52
[11] DRESSLER V L, SANTOS C M M, ANTES F G, et al. Total mercury, inorganic mercury and methyl mercury determination in red wine[J]. Food Analytical Methods, 2012, 5(3):505-511
[12] QIU G, FENG X, WANG S, et al. Mercury contaminations from historic mining to water, soil and vegetation in Lanmuchang, Guizhou, southwestern China[J]. Science of the Total Environment, 2006, 368(1):56-68
[13] 陈贺海, 鲍惠君, 付冉冉, 等. 微波消解-电感耦合等离子体质谱法测定铁矿石中铬砷镉汞铅[J]. 岩矿测试, 2012, 31(2):234-240
[14] MOLISANI M, ROCHA R, MACHADO W, et al. Mercury contents in aquatic macrophytes from two reservoirs in the Paraiba do Sul:Guandu river system, SE Brazil[J]. Brazilian Journal of Biology, 2006, 66(1):101-107
[15] KARA D. Separation and removal of mercury(ii) from water samples using (acetylacetone)-2-thiol-phenyleneimine immobilized on anion-exchange resin prior to determination by cold vapor inductively coupled plasma atomic emission spectroscopy[J]. Analytical Letters, 2005, 38(13):2217-2230
[16] 贺攀红, 吴领军, 杨珍, 等. 氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中痕量砷锑铋汞[J]. 岩矿测试, 2013, 32(2):240-243
[17] FRENTIU T, BUTACIU S, PONTA M, et al. Determination of total mercury in fish tissue using a low-cost cold vapor capacitively coupled plasma microtorch optical emission microspectrometer:comparison with direct mercury determination by thermal decomposition atomic absorption spectrometry[J]. Food Analytical Methods, 2015, 8(3):643-648
[18] ADLNASAB L, EBRAHIMZADEH H, ASGHARINEZHAD A A, et al. A preconcentration procedure for determination of ultra-trace mercury (ii) in environmental samples employing continuous-flow cold vapor atomic absorption spectrometry[J]. Food Analytical Methods, 2014, 7(3):616-628
[19] ORESTE E Q, JESUS A D, OLIVEIRA R M D, et al. New design of cold finger for sample preparation in open system:Determination of Hg in biological samples by CV-AAS[J]. Microchemical Journal, 2013, 109(3):5-9
[20] 祖文川, 汪雨, 武彦文, 等. 电化学氢化物发生技术在原子光谱分析领域的应用进展[J]. 岩矿测试, 2014, 33(2):168-177
[21] 刘少玉. RA-915~+型测汞仪快速测定土壤中的总汞[J]. 环境与可持续发展, 2014, 39(6):207-209
[22] 杨晓红, 张榆霞, 王燕, 等. RA-915M测汞仪直接测定土壤和沉积物中总汞[J]. 环境科学导刊, 2016, 35(4):95-99
[23] 马超, 贺承启, 尤斌. RA-915M测汞仪测定土壤样品中的总汞[J]. 干旱环境监测, 2015, 29(2):66-69
[24] 祝云龙, 姜加虎, 孙占东, 等. 洞庭湖沉积物中重金属污染特征与评价[J]. 湖泊科学, 2008, 20(4):477-485