您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>金属有机骨架材料吸附去除水体中重金属研究进展

金属有机骨架材料吸附去除水体中重金属研究进展

4406    2018-11-27

免费

全文售价

作者:许淑霞1, 杨超2, 陈强1

作者单位:1. 成都理工大学环境学院, 四川 成都 610059;
2. 成都理工大学材料与化学化工学院, 四川 成都 610059


关键词:金属有机骨架;重金属离子;吸附


摘要:

金属有机骨架(metal-organic frameworks,MOFs)是一类新型的有机-无机杂化多孔材料,由于其具有比表面积大、孔隙率高、孔径可调、结构多样、开放的金属位点和化学可修饰性等诸多优点在污染物吸附去除领域受到广泛的关注。通过总结近几年MOFs、MOFs复合材料和MOFs后修饰材料在水体中重金属离子的吸附去除方面的研究进展,并对其应用前景做出展望。


Progress in adsorption removal of heavy metal ions from water with metal-organic frameworks

XU Shuxia1, YANG Chao2, CHEN Qiang1

1. College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China;
2. College of Material and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China

Abstract: Metal-organic frameworks (MOFs) are known as novel organic-inorganic hybrid porous structures. Due to their large specific surface area, high porosity, adjustable pore size, diverse structure, open metal sites and chemical modification, MOFs are playing important roles in pollutant adsorption removal. This review summarizes the current progress of MOFs, MOFs composites and post-synthetic modification in adsorption and removal of heavy metals from water, and gives the prospects in the end.

Keywords: metal-organic frameworks;heavy metal ions;adsorption

2018, 44(11): 12-18  收稿日期: 2018-08-03;收到修改稿日期: 2018-09-11

基金项目: 中国博士后科学基金特别资助项目(2016T90839)

作者简介: 许淑霞(1977-),女,新疆昌吉州人,教授,博士,主要从事环境污染物检测及水污染控制技术研究

参考文献

[1] KADIRVELU K, THAMARAISELVI K, NAMASIVAYAM C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste[J]. Bioresource Technology, 2001, 76(1):63-65
[2] FU F, WANG Q. Removal of heavy metal ions from wastewaters:a review[J]. Journal of environmental management, 2011, 92(3):407-418
[3] 姜言欣, 黄祥, 蒋文举. 活性炭处理重金属废水的研究与应用进展[J]. 安徽农业科学, 2012(7):4156-4158
[4] RAO G, LU C, SU F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes:A review[J]. Separation and Purification Technology, 2007, 58(1):224-231
[5] ERDEM E, KARAPINAR N, DONAT R. The removal of heavy metal cations by natural zeolites[J]. Journal of colloid and interface science, 2004, 280(2):309-314
[6] 李长波, 赵国峥, 张洪林, 等. 生物吸附剂处理含重金属废水研究进展[J]. 化学与生物工程, 2006(2):10-12
[7] JAMES S L. Metal-organic frameworks[J]. Chemical Society Reviews, 2003, 32(5):276-288
[8] ZHOU H C, LONG J R, YAGHI O M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2):673-674
[9] SINGH R, SINGH S, PARIHAR P, et al. Arsenic contamination, consequences and remediation techniques:a review[J]. Ecotoxicology and environmental safety, 2015(112):247-270
[10] JIAN M, LIU B, ZHANG G, et al. Adsorptive removal of arsenic from aqueous solution by zeolitic imidazolate framework-8(ZIF-8) nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015(465):67-76
[11] WU Y N, ZHOU M, ZHANG B, et al. Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal[J]. Nanoscale, 2014, 6(2):1105-1112
[12] WANG C, LIU X, CHEN J P, et al. Superior removal of arsenic from water with zirconium metal-organic framework UiO-66[J]. Scientific reports, 2015(5):16613
[13] ZHU B J, YU X Y, JIA Y, et al. Iron and 1, 3, 5-benzenetricarboxylic metal-organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions[J]. The Journal of Physical Chemistry C, 2012, 116(15):8601-8607
[14] ZHANG M, JIA J, HUANG K, et al. Facile electrochemical synthesis of nano iron porous coordination polymer using scrap iron for simultaneous and cost-effective removal of organic and inorganic arsenic[J]. Chinese Chemical Letters, 2018, 29(3):456-460
[15] LI J, WU Y N, LI Z, et al. Characteristics of arsenate removal from water by metal-organic frameworks (MOFs)[J]. Water Science and Technology, 2014, 70(8):1391-1397
[16] LI W C, TSE H F. Health risk and significance of mercury in the environment[J]. Environmental Science and Pollution Research, 2015, 22(1):192-201
[17] SELIN N E. Global biogeochemical cycling of mercury:A review[J]. Annual Review of Environment and Resources, 2009, 34(1):43-63
[18] ZHANG F S, NRIAGU J O, ITOH H. Mercury removal from water using activated carbons derived from organic sewage sludge[J]. Water research, 2005, 39(2-3):389-395
[19] KE F, QIU L G, YUAN Y P, et al. Thiol-functionalization of metal-organic framework by a facile coordination-based postsynthetic strategy and enhanced removal of Hg2+ from water[J]. Journal of hazardous materials, 2011(196):36-43
[20] YEE K K, REIMER N, LIU J, et al. Effective mercury sorption by thiol-laced metal-organic frameworks:in strong acid and the vapor phase[J]. Journal of the American Chemical Society, 2013, 135(21):7795-7798
[21] LIU T, CHE J X, HU Y Z, et al. Alkenyl/thiol-derived metal-organic frameworks (MOFs) by means of postsynthetic modification for effective mercury adsorption[J]. Chemistry-A European Journal, 2014, 20(43):14090-14095
[22] LUO F, CHEN J L, DANG L L, et al. High-performance Hg2+ removal from ultra-low-concentration aqueous solution using both acylamide-and hydroxyl-functionalized metal-organic framework[J]. Journal of Materials Chemistry A, 2015, 3(18):9616-9620
[23] HUANG L, HE M, CHEN B, et al. A mercapto functionalized magnetic Zr-MOF by solvent-assisted ligand exchange for Hg2+ removal from water[J]. Journal of Materials Chemistry A, 2016, 4(14):5159-5166
[24] LUO X, SHEN T, DING L, et al. Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg2+ from water[J]. Journal of hazardous materials, 2016(306):313-322
[25] LEUS K, PEREZ J P H, FOLENS K, et al. UiO-66-(SH)2 as stable, selective and regenerable adsorbent for the removal of mercury from water under environmentally-relevant conditions[J]. Faraday discussions, 2017(201):145-161
[26] LIANG L, CHEN Q, JIANG F, et al. In situ large-scale construction of sulfur-functionalized metal-organic framework and its efficient removal of Hg(ii) from water[J]. Journal of Materials Chemistry A, 2016, 4(40):15370-15374
[27] LUO X, LIU L, DENG F, et al. Novel ion-imprinted polymer using crown ether as a functional monomer for selective removal of Pb(Ⅱ) ions in real environmental water samples[J]. Journal of Materials Chemistry A, 2013, 1(28):8280-8286
[28] LUO X, DING L, LUO J. Adsorptive removal of Pb(Ⅱ) ions from aqueous samples with amino-functionalization of metal-organic frameworks MIL-101(Cr)[J]. Journal of Chemical & Engineering Data, 2015, 60(6):1732-1743
[29] WANG N, YANG L Y, WANG Y G, et al. Fabrication of composite beads based on calcium alginate and tetraethylenepentamine-functionalized MIL-101 for adsorption of Pb(Ⅱ) from aqueous solutions[J]. Polymers, 2018, 10(7):750
[30] MINH THANH H T, THU PHUONG T T, LE HANG P T, et al. Comparative study of Pb(Ⅱ) adsorption onto MIL-101 and Fe-MIL-101 from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2018, 6(4):4093-4102
[31] SUN D T, PENG L, REEDER W S, et al. Rapid, selective heavy metal removal from water by a metal-organic framework/polydopamine composite[J]. ACS central science, 2018, 4(3):349-356
[32] YIN N, WANG K, WANG L, et al. Amino-functionalized MOFs combining ceramic membrane ultrafiltration for Pb(Ⅱ) removal[J]. Chemical Engineering Journal, 2016(306):619-628
[33] WANG K, GU J, YIN N. Efficient removal of Pb(Ⅱ) and Cd(Ⅱ) using NH2-functionalized Zr-MOFs via rapid microwave-promoted synthesis[J]. Industrial & Engineering Chemistry Research, 2017, 56(7):1880-1887
[34] YU C, HAN X, SHAO Z, et al. High efficiency and fast removal of trace Pb(Ⅱ) from aqueous solution by carbomethoxy functionalized metal-organic framework[J]. Crystal Growth & Design, 2018, 18(3):1474-1482
[35] RIVERA J M, RINCÓN S, BEN YOUSSEF C, et al. Highly efficient adsorption of aqueous Pb(Ⅱ) with mesoporous metal-organic framework-5:an equilibrium and kinetic study[J]. Journal of Nanomaterials, 2016(2016):1-9
[36] RICCO R, KONSTAS K, STYLES M J, et al. Lead(ii) uptake by aluminium based magnetic framework composites (MFCs) in water[J]. Journal of Materials Chemistry A, 2015, 3(39):19822-19831
[37] COSTA M, KLEIN C B. Toxicity and carcinogenicity of chromium compounds in humans[J]. Critical Reviews in Toxicology, 2006, 36(2):155-163
[38] SHI P F, ZHAO B, XIONG G, et al. Fast capture and separation of, and luminescent probe for, pollutant chromate using a multi-functional cationic heterometal-organic framework[J]. Chemical Communications, 2012, 48(66):8231-8233
[39] ABOUTORABI L, MORSALI A, TAHMASEBI E, et al. Metal-organic framework based on isonicotinate n-Oxide for fast and highly efficient aqueous phase Cr(VI) adsorption[J]. Inorganic chemistry, 2016, 55(11):5507-5513
[40] ZHANG Q, YU J, CAI J, et al. A porous Zr-cluster-based cationic metal-organic framework for highly efficient Cr2O7(2-) removal from water[J]. Chemical Communications, 2015, 51(79):14732-14734
[41] MALEKI A, HAYATI B, NAGHIZADEH M, et al. Adsorption of hexavalent chromium by metal organic frameworks from aqueous solution[J]. Journal of Industrial and Engineering Chemistry, 2015(28):211-216
[42] ZHU K, CHEN C, XU H, et al. Cr(VI) reduction and immobilization by core-double-shell structured magnetic polydopamine@zeolitic idazolate frameworks-8 microspheres[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8):6795-6802
[43] YANG Q, ZHAO Q, REN S S, et al. Fabrication of core-shell Fe3O4@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution[J]. Journal of Solid State Chemistry, 2016(244):25-30
[44] WANG K, TAO X, XU J, et al. Novel chitosan-MOF composite adsorbent for the removal of heavy metal ions[J]. Chemistry Letters, 2016, 45(12):1365-1368
[45] LI X, GAO X, AI L, et al. Mechanistic insight into the interaction and adsorption of Cr(VI) with zeolitic imidazolate framework-67 microcrystals from aqueous solution[J]. Chemical Engineering Journal, 2015(274):238-246
[46] RAPTI S, POURNARA A, SARMA D, et al. Rapid, green and inexpensive synthesis of high quality UiO-66 amino-functionalized materials with exceptional capability for removal of hexavalent chromium from industrial waste[J]. Inorganic Chemistry Frontiers, 2016, 3(5):635-644
[47] WASEEM M, MUSTAFA S, NAEEM A, et al. Cd2+ sorption characteristics of iron coated silica[J]. Desalination, 2011, 277(1-3):221-226
[48] ZHANG J, XIONG Z, LI C, et al. Exploring a thiol-functionalized MOF for elimination of lead and cadmium from aqueous solution[J]. Journal of Molecular Liquids, 2016(221):43-50
[49] WANG Y, YE G, CHEN H, et al. Functionalized metal-organic framework as a new platform for efficient and selective removal of cadmium(Ⅱ) from aqueous solution[J]. Journal of Materials Chemistry A, 2015, 3(29):15292-15298
[50] SALEEM H, RAFIQUE U, DAVIES R P. Investigations on post-synthetically modified UiO-66-NH2 for the adsorptive removal of heavy metal ions from aqueous solution[J]. Microporous and Mesoporous Materials, 2016(221):238-244
[51] CHAKRABORTY A, BHATTACHARYYA S, HAZRA A, et al. Post-synthetic metalation in an anionic MOF for efficient catalytic activity and removal of heavy metal ions from aqueous solution[J]. Chemical Communications, 2016, 52(13):2831-2834
[52] ROUSHANI M, SAEDI Z, BAGHELANI Y M. Removal of cadmium ions from aqueous solutions using TMU-16-NH2 metal organic framework[J]. Environmental Nanotechnology, Monitoring & Management, 2017(7):89-96