您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>多普勒展宽测温验证实验中的精确控温系统研究

多普勒展宽测温验证实验中的精确控温系统研究

2714    2020-08-19

免费

全文售价

作者:王贺1,2, 潘奕捷2, 王柏淞2,3, 王欣1, 杨苏辉1

作者单位:1. 北京理工大学光电学院,北京 100081;
2. 中国计量科学研究院,北京 100029;
3. 北京信息科技大学仪器科学与光电工程学院,北京 100192


关键词:多普勒展宽测温;温度控制;均匀性;稳定性;不确定度


摘要:

玻尔兹曼常量的定值和温度基本单位开尔文的重新定义将使国际协议温标向热力学温标融合过渡。基于铯原子直接吸收光谱的多普勒展宽测温可实现实用、芯片级热力学温度测量,其实验原理验证依赖高准确度的控温环境。该文搭建面向室温验证范围的恒温腔体,利用制冷循环水浴提供基础温度,使用自研PID程序调控比例-积分控制参数,输出电压动态改变加热功率,采用接触电加热方式实现精确温度调节与稳定。结果表明:在25 ℃实验条件下,该系统温度均匀性小于8 mK,12 h内稳定性优于0.2 mK,整体控温标准不确定度11.02 mK(k=1)。研究为实现芯片级、在线免校准的热力学温度传感器实验验证奠定一定的基础。


Research on accurate temperature control system in Doppler broadening thermometry verification experiment
WANG He1,2, PAN Yijie2, WANG Bosong2,3, WANG Xin1, YANG Suhui1
1. School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
2. National Institute of Metrology, China, Beijing 100029, China;
3. School of Instrument Science and Opto Electronics Engineering, Beijing Information Science & Technology University, Beijing 100192, China
Abstract: The definite definition of the Boltzmann constant and the basic unit of temperature Kelvin will allow the international protocol temperature scale to transition to the thermodynamic temperature scale fusion. The Doppler broadening thermometry based on the direct absorption spectrum of helium atoms can realize practical and chip-level thermodynamic temperature measurement. The experimental principle verification relies on high accuracy temperature control environment. This study builds a constant temperature chamber for the room temperature verification range, uses the refrigeration cycle water bath to provide the base temperature, uses the self-developed PID program to control the proportional-integral control parameters, the output voltage dynamically changes the heating power, and uses the contact electric heating method to achieve precise temperature regulation and stability. The experimental results show that under the condition of 25 ℃, the temperature uniformity of the system is less than 8 mK, the stability within 12 h is better than 0.2 mK, and the overall temperature standard uncertainty is 11.02 mK (k=1). The research laid the foundation for the experimental verification of the thermodynamic temperature sensor for chip-level and online calibration-free calibration.
Keywords: Doppler broadening thermometry;temperature control;uniformity;stability;uncertainty
2020, 46(8):9-14  收稿日期: 2019-07-24;收到修改稿日期: 2019-10-02
基金项目: 国家重点研发项目资助(2017YFF0206102)
作者简介: 王贺(1994-),男,吉林长春市人,硕士研究生,专业方向为温度计量
参考文献
[1] 段宇宁, 吴金杰. 国际计量委员会委员段宇宁谈国际单位制的重新定义[J]. 中国计量, 2018, 270(5): 12-15
[2] 段宇宁, 吴金杰. 国际计量开启新纪元: 基本单位的量子化定义[J]. 自动化仪表, 2019, 40(4): 1-4
[3] 原遵东. 基于自然常数的国际单位制重新定义[J]. 中国科技术语, 2019, 21(3): 28-31
[4] GAISER C, ZANDT T, FELLMUTH B. Dielectric-constant gas thermometry[J]. Metrologia, 2015, 52(5): 217-226
[5] MOLDOVER M R, TEW W L, YOON H W. Advances in thermometry[J]. Nature Physics, 2016, 12(1): 7-11
[6] QU J F, BENZ S, COAKLEY K, et al. An improved electronic determination of the Boltzmann constant by Johnson noise thermometry[J]. Metrologia, 2017, 73(6): 113-116
[7] TRUONG G W, ANSTIE J D, MAY E F, et al. Accurate lineshape spectroscopy and the Boltzmann constant[J]. Nature communications, 2015, 6: 8345-8364
[8] GOTTI R, MORETTI L, GATTI D, et al. Cavity-ring-down Doppler-broadening primary thermometry[J]. Physical Review A, 2018, 97(1): 012512
[9] CASA G, CASTRILLO A, GALZERANO G, et al. Primary gas thermometry by means of laser-absorption spectroscopy: determination of the Boltzmann constant[J]. Physical Review Letters, 2008, 100(20): 200801
[10] MERLONE A, MORO F. Design and capabilities of the temperature control system for the italian experiment based on precision laser spectroscopy for a new determination of the Boltzmann constant[J]. International Journal of Thermophysics, 2010, 31: 1360-1370
[11] DAUSSY C, GUINET M, AMY-KLEIN A, et al. Measurement of the Boltzmann constant by the Doppler broadening technique at a 3.8×10–5 accuracy level[J]. Comptes Rendus Physique, 2009, 10(9): 883-893
[12] TRUONG G W, STUART D, ANSTIE J D, et al. Atomic spectroscopy for primary thermometry[J]. Metrologia, 2015, 52(5): 324-342
[13] CHENG C F, WANG J, SUN Y R, et al. Doppler broadening thermometry based on cavity ring-down spectroscopy[J]. Metrologia, 2015, 52(5): 385-393
[14] 廖文汉, 潘奕捷, 王贺, 等. 基于铯133原子D1线直接吸收光谱的多普勒展宽热力学温度测量[J]. 光学技术, 2019, 45(1): 42-45
[15] PAN Y J, LIAO W H, WANG H, et al. Cesium atomic Doppler broadening thermometry for room temperature measurement[J]. Chinese Optics Letters, 2019, 17(6): 060201
[16] 吴勤. 标准铂电阻温度计测量结果不确定度评定[J]. 计量与测试技术, 2013, 40(11): 57-60
[17] 颜烺. 工业铂热电阻检定不确定度评定分析[J]. 仪器仪表标准化与计量, 2018(1): 32-38
[18] 测量不确定度评定与表示: JJF1059.1-2012[S]. 北京: 中国质检出版社, 2012.