您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>开放空间大尺度可燃气云爆炸测试技术探讨

开放空间大尺度可燃气云爆炸测试技术探讨

3320    2018-08-27

免费

全文售价

作者:谢萍1, 李明智2, 刘振翼2

作者单位:1. 中石油管道有限责任公司西部分公司, 新疆 乌鲁木齐 830000;
2. 北京理工大学, 北京 100081


关键词:大尺度;气云爆炸;超压;测试方法


摘要:

为研究开放空间大尺度可燃气云爆炸过程对周边环境的影响,在新疆哈密的管道断裂控制试验场开展天然气管道全尺寸爆破试验时,提出一种基于高空三维测点布置的多通道联动采集测试方法,基于该方法选择合适的测试仪器并在现场搭建测试系统,得到在试验条件下开放空间一定范围内的冲击波超压,数据获取率平均为84.8%。根据获得的试验数据绘制出天然气管道爆炸后冲击波超压峰值随距离的变化曲线,3次试验的曲线变化规律一致,证明该测试方法针对大尺度气云爆炸冲击波超压的高空、多测点、远距离测试是可行的。


Discussion on explosion test technology of large-scale flammable gas explosion in open field

XIE Ping1, LI Mingzhi2, LIU Zhenyi2

1. PetroChina West Pipeline Company, Urumqi 830000, China;
2. Beijing Institute of Technology, Beijing 100081, China

Abstract: In order to study the influence of large scale open space gas cloud explosion on the surrounding environment, a multi-channel linkage acquisition test method based on high-altitude three-dimensional site arrangement was developed in the gas pipeline blasting test field of HAMI-XJ pipeline full-scale burst test site. The shock wave pressure in a certain range of open space under the experimental conditions is obtained, the data acquisition rate is 84.8% on average. According to the experimental data obtained, the curve of the shock wave change after gas pipeline explosion is drawn.The curves of the three experiments are consistent, and it is proved that the method is feasible to measure the overpressure of large-scale gas cloud explosion shock wave at high altitude, multi-point and long distance.

Keywords: large scale;vapor cloud explosion;overpressure;test method

2018, 44(8): 1-7  收稿日期: 2018-01-09;收到修改稿日期: 2018-03-21

基金项目: 

作者简介: 谢萍(1972-),女,甘肃武威市人,高级工程师,硕士,主要从事油气管道安全输送研究工作

参考文献

[1] KIM W K, MOGI T, DOBASHI R. Fundamental study on accidental explosion behavior of hydrogen-air mixtures in an open space[J]. International Journal of Hydrogen Energy, 2013, 38(19):8024-8029.
[2] KIM W K, MOGI T, DOBASHI R. Effect of propagation behaviour of expanding spherical flames on the blast wave generated during unconfined gas explosions[J]. Fuel, 2014, 128(14):396-403.
[3] KIM W K, KUWANA K, MOGI T, et al. Self-similar propagation of expanding spherical flames in large scale gas explosions[J]. Proceedings of the Combustion Institute, 2015, 35(2):2051-2058.
[4] OTSUKA T, SAITOH H, MIZUTANI T, et al. Hazard evaluation of hydrogen-air deflagration with flame propagation velocity measurement by image velocimetry using brightness subtraction[J].Journal of Loss Prevention in the Process Industries, 2015,20(4):427-432.
[5] 李亚娟. 远距离多通道数据采集控制系统[D].太原:中北大学, 2012.
[6] 张榕. 基于虚拟仪器的冲击波场超压测试系统设计[D].太原:中北大学, 2014.
[7] 马铁华, 祖静. 冲击波超压存储测试技术研究[J]. 仪器仪表学报, 2004, 25(s1):134-135.
[8] 董力科, 范锦彪, 王燕. 基于存储测试的爆炸振动测量系统的设计与实现[J]. 伺服控制, 2013(1):50-52.
[9] LOWESMITH B J, HANKINSON G. Large scale experiments to study fires following the rupture of high pressure pipelines conveying natural gas and natural gas/hydrogen mixtures[J]. Process Safety & Environmental Protection, 2013, 91(1-2):101-111.
[10] 赖富文, 王文廉, 张志杰. 大当量战斗部爆炸冲击波测试系统设计及应用[J]. 弹箭与制导学报, 2009, 29(3):133-135.
[11] 杜红棉, 祖静, 马铁华, 等. 自由场传感器外形结构对冲击波测试的影响研究[J]. 振动与冲击, 2011, 30(11):85-89.