您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于正交试验的建材燃烧烟密度测试装置参数组合优化

基于正交试验的建材燃烧烟密度测试装置参数组合优化

3151    2016-01-18

免费

全文售价

作者:欧凯1, 洪晓斌1, 文泽贵1, 季勇2, 刘桂雄1

作者单位:1. 华南理工大学机械与汽车工程学院, 广东 广州 510640;
2. 广州信禾检测设备有限公司, 广东 广州 510000


关键词:烟密度; 烟气总值; 最大衰减率; 正交试验


摘要:

为提高烟密度测试精度,用三水平三因素的正交设计方法对烟密度测试系统参数(包括辐射板黑体温度、点火器的点火火焰高度、烟道中烟气流速)进行组合优化设计。通过对试验结果、极差值和方差值的分析,得出对材料产烟影响的主次因素。实验结果表明:采用辐射板黑体温度为505℃、点火器的点火火焰高度为12 mm、烟道中烟气流速为2.5 m/s的系统参数组合,可得到最大的烟气总值和光的最大衰减率,为提高烟密度测试精度提供依据。


Parameter combination optimization of smoke density test apparatus for building materials combustion based on orthogonal experiment design

OU Kai1, HONG Xiao-bin1, WEN Ze-gui1, JI Yong2, LIU Gui-xiong1

1. School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou 510640, China;
2. Guangzhou Sunho Testing Equipment Co., Ltd, Guangzhou 510000, China

Abstract: In order to improve the measuring accuracy of smoke density, three parameters and three levels orthogonal table were adopted to confirm the optimal combination parameter of smoke density test, where the three parameters were respectively blackbody temperature of radiant panel, flame height of igniter, velocity of flue gas. The range analysis of experimental results showed the relative importance of different parameters affecting the smoke production. Under the similar experiment conditions as described in this paper, the optimized parameter combination for the smoke density test apparatus was confirmed that blackbody temperature was 505℃, flame height was 12 mm and flue gas velocity was 2.5 m/s, which established the basis for improving the measurement accuracy.

Keywords: smoke density; total cost of flue gas; maximum attenuation; orthogonal design

2014, 40(4): 128-131  收稿日期: 2014-1-19;收到修改稿日期: 2014-2-24

基金项目: 国家科技部科技型中小型企业创新基金项目(12C26214405145);广东省中国科学院全面战略合作项目(2012B091100224);广州市中小型企业创新基金项目(201114200202)

作者简介: 欧凯(1990-),男,湖北石首市人,硕士研究生,专业方向为智能传感技术。

参考文献

[1] 张青春. 基于ZigBee技术的火灾探测报警传感器网络设计[J]. 中国测试,2013,39(4):77-80.
[2] Christopher C, Monika B, Stefano B. Flammability resistance properties of epoxy nanocomposites[C]//ASME International Mechanical Engineering Congress and Exposition,2006:325-336.
[3] Nazaré S, Kandola B K, Horrocks A R. Smoke, CO, and CO2 measurements and evaluation using different fire testing techniques for flame retardant unsaturated polyester resin formulations[J]. Journal of Fire Sciences,2008,26(5):215-242.
[4] Daisuke K, Katsushi K, Mariko I, et al. Evaluation of combustion properties of wood pellets using a cone calorimeter[J]. Journal of Wood Science,2009,55(6):453-457.
[5] Romualdas M, Vladas P. Fire tests on wood products subjected to different heat fluxes[J]. Journal of Civil Engineering and Management,2010,16(4):484-490.
[6] Tian W L, Wu Y Q, Peng W X, et al. Study on low-toxicity fire-retardant treated technology of wood[C]//3rd International Conference on Bioinformatics and Biomedical Engineering,2009:1-5.
[7] 赵侠,邬玉龙. 建材烟密度测定结果的影响因素分析[J].中国建材科,2010(3):5-6.
[8] 陈宏业,邓丽欢,袁嘉伟. 橡塑保温材料燃烧性能测试影响因素分析[J]. 中国高新技术企业,2011(27):39-40.
[9] 张世凭,程明,唐先春,等. 基于正交测试实验法的钼丝振动研究[J]. 中国测试,2013,39(4):10-13.
[10] 洪晓斌,刘桂雄. 面向IP模式测控系统的PLSR-SBR双层压缩方法[J]. 光学精密工程,2010,18(10):2280-2287.