您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>共平面二维高精度工作台误差修正与实验研究

共平面二维高精度工作台误差修正与实验研究

2951    2016-01-18

免费

全文售价

作者:宫二敏, 黄强先, 余夫领

作者单位:合肥工业大学仪器科学与光电工程学院, 安徽 合肥 230009


关键词:微纳米三坐标测量机; 误差修正; 二维高精度工作台; 三维测量


摘要:

该文通过采用误差分离与修正技术,对微纳米三坐标测量机x-y平面内存在的各项误差进行全面分析。利用高精密检测仪器和标准件,设计误差分离与修正方案,并对修正过的误差项补偿效果进行测试。然后通过实验测量标准量块平面度、长度等量值,以检验修正后的微纳米三坐标测量机测量精度。实验结果显示,一等量块工作面的平面度测量重复性标准差达到9.5 nm,x和y方向长度测量的标准差分别达到了10 nm和19 nm。理论分析和实验表明,所研制的二维高精度工作台可用于高精度的三维测量。


Research of error correction and experiment of coplanar 2D high precision stage

GONG Er-min, HUANG Qiang-xian, YU Fu-ling

School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, Hefei 230009, China

Abstract: Based on error separation and correlation technique, all kinds of errors exist in the x-y plane of the micro/nano CMM were comprehensively analyzed. Using high precision detecting instruments and standard parts, the scheme was designed for the error separation and correction of the main errors in the x-y plane of the micro/nano CMM, and the compensation effect of the modified errors was tested. Then through experiments, parameters of standard block gauge, such as the flatness, length, etc., were measured to test the modified measurement accuracy of the micro/nano CMM. Experimental results show that, for a first grade block gauge, the flatness measurement standard deviation of its working surface is up to 9.5 nm, and the standard deviations of lengths are 10 nm and 19 nm in x and y directions, respectively. Theoretical analysis and experiments indicate that the developed two-dimensional (2D) high precision stage can be used for high precision three-dimensional (3D) measurement.

Keywords: micro-nano CMM; error correction; 2D high precision stage; 3D measurement

2014, 40(4): 10-14  收稿日期: 2014-1-9;收到修改稿日期: 2014-3-5

基金项目: 国家863计划重点项目(2008AA042409)

作者简介: 宫二敏(1990-),男,安徽巢湖市人,硕士研究生,专业方向为微纳米三维测量技术。

参考文献

[1] Leach R K, Murphy J. The design of coordinate measuring probe for characterizing truly three-dimensional micro-structures[C]//4th Euspen International Conference Glasgow UK,2004:230-231.
[2] Kramar J A. Nanometer resolution metrology with the molecular measuring machine[J]. Meas Sci Technol,2005(16):2121-2128.
[3] Spaan H, Widdershoven I, Donker R. Design and calibration of"Isara 400" ultra-precision CMM[J]. Optics and Precision Engineering,2011,19(9):2236-2241.
[4] Jäger G. The metrological basis and operation of nanopositioning and nanomeasuring machine NMM-1[J]. Tm-Technisches Messen,2009(76):227-234.
[5] Fujiwara M, Yamaguchi A, Takamasu K. Evaluation of stages of Nano-CMM[M]. Netherlands:Kluwer Academic Publishers,2001.
[6] Küng A, Meli F, Thalmann R. Ultraprecision micro-CMM using a low force 3D touch probe[J]. Measurement Science and Technology,2007(18):319-327.
[7] 程方,范光照,费业泰. 纳米三坐标测量机接触式测头预行程测量[J]. 纳米技术与精密工程,2010,8(2):107-113.
[8] Spaan H, Widdershoven I, Donker R. Design and calibration of "Isara 400" ultra-precision CMM[J]. Optics and Precision Engineering,2011,19(9):2236-2241.
[9] 包园园. 三次样条函数在自由曲线测量中的应用研究[J].机械制造与自动化,2009(2):88-89.