您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>边界元法风力机近尾迹区域气动噪声研究

边界元法风力机近尾迹区域气动噪声研究

2926    2015-04-02

免费

全文售价

作者:代元军, 李保华, 任常在

作者单位:新疆工程学院, 新疆 乌鲁木齐 830091


关键词:风力机; 亥姆霍兹边界积分方程; 边界元方法; 噪声


摘要:

以新系列翼型风力机为研究对象,针对设计风速最佳攻角含有叶尖涡的复杂流动,首先采用分区域过渡层的滑移网格结合叶片近壁区的贴体网格方法,获得叶轮近尾迹区域的流场流动信息高精度计算结果;然后采用间接边界元方法建立无界声场中风力机声辐射的边界元数学模型,获得风力机近尾迹区域声场细节信息。结果表明:声压变化规律为在风轮近尾迹区域截面上,声压值沿半径方向存在脉动变化强烈的3个区域,并且都存在峰值,声压值最大的地方出现在叶尖涡区域,经过叶尖涡区域后,沿半径方向声压值逐渐降低。


Study on noise of wind turbine near wake based on boundary element method

DAI Yuanjun, LI Baohua, REN Changzai

Xinjiang Ploytechnical College, Urumqi 830091, China

Abstract: Based on the optimum attack angle of designed wind speed with the tip vortex in complex flow, a new grid generation strategy was put forward, which used regional transition layer grid to improve tip vortex simulation. This method of blade body fitted grid area to the central region of the transition layer of mesh grid could capture the tip vortex position and size. Controlling mesh gradient could obtain high accuracy calculation results. Unbounded boundary element mathematical model of wind turbine sound radiation in sound field was established by the indirect boundary element method(BEM). Wind turbine sound field details were obtained. The results show that the noise distribution law of maximum sound pressure level emerged in turn three strong pressure fluctuation change regions from center to radius direction, the sound pressure level in these three regions emerges as a sharp peak. The sound pressure level of the tip vortex is maximum sound pressure.

Keywords: wind turbine; Helmholtz; BEM; noise

2015, 41(1): 100-103  收稿日期: 2014-2-2;收到修改稿日期: 2014-4-2

基金项目: 新疆杰出青年科技人才培养项目(2013711002);新疆工程学院博士启动基金项目(2013BQJ021606)

作者简介: 代元军(1978-),男,河南正阳县人,副教授,博士,主要从事风力发电技术方面的研究。

参考文献

[1] Ciskowski R D, Brebbia C A. Boundary element methods in acoustics[M]. Southampton: Computational Mechanics Publications and Elsevier Applied Science,1991:132-143.
[2] 程昊,高煜,张永斌,等. 振动体声学灵敏度分析的边界元法[J]. 机械工程学报,2007,44(7):45-51.
[3] Xiang C L, Wang W P, Liu H. Numericalsimulation of sound radiation on gearbox's housing[J]. Chinese Journal of Mechanical Engineering,1998,11(4):249-256.
[4] Schenck H A. Improved integral formulation for acoustic radiation problems[J]. J Acoust Soc Am,1968(44):41-58.
[5] Burton A J, Miller G F. The application of integral equation methods to the numerical solution of some exterior boundary value problems[J]. Proc Royal Society,1971,323(1553):201-210.
[6] Rokhlin V. Rapid solution of integral equations of classical potential theory[J]. Journal of Computational Physics,1985,60(2):187-207.
[7] Greengard L, Rokhlin V. A fast algorithm for particle simulations[J]. Journal of Computational Physics,1987,73(2):325-348.
[8] Yoshida K. Applications of fast multipole method to boundary integral equation method[D]. Kyoto: Kyoto University,2001.
[9] Liu Y J. A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems[J]. International Journal for Numerical Methods in Engineering,2006,65(6):863-881.
[10] Seybert A F, Chen C Y R, Wu T W. The solution of coupled interior/exterior acoustic problems using the boundary element method[J]. Journal of Acoustical Society of America,1990,88(3):1612-1618.
[11] 高志鹰. 风轮近尾迹流动与声辐射的研究[D]. 呼和浩特: 内蒙古工业大学,2010.