您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>一种改进的自适应滤波算法在微震信号处理中的实现

一种改进的自适应滤波算法在微震信号处理中的实现

3216    2015-04-02

免费

全文售价

作者:李梁1, 庹先国1,2, 李怀良1, 刘明哲2

作者单位:1. 西南科技大学核废物与环境安全国防重点实验室, 四川 绵阳 621010;
2. 成都理工大学地质灾害防治与地质环境保护国家重点实验室, 四川 成都 610059


关键词:自适应滤波器; 变步长延时LMS算法; FPGA; Matlab软件


摘要:

为实现低阶滤波器对微震信号进行自适应滤波处理,提出一种新型的自适应滤波算法变步长延时LMS算法(VS-DLMS)。运用Matlab软件对该算法进行计算机仿真验证,并将其与传统自适应滤波算法在滤波器阶数较低时的滤波效果进行比较,证明该算法的有效性与优越性。最终设计该系统各模块功能图并在FPGA中编写VHDL语言对该算法进行硬件部分实现。结果表明:该算法有非常好的可行性,对比传统算法在高速地震信号采集处理应用中有着良好的应用前景。


Realization of improved adaptive filter in seismic signal processing

LI Liang1, TUO Xianguo1,2, LI Huailiang1, LIU Mingzhe2

1. Fundamental Science on Nuclear Wastes and Environment Safety Laboratory, Southwest University of Science and Techndogy, Mianyang 621010, China;
2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

Abstract: This paper was aimed at the problem that how to design a low-orders filter to process the seismic signal and came up with a new type of adaptive filter algorism: variable step delay LMS algorism (VS-DLMS). By using Matlab for simulation and verification this algorism in computer and comparing the results between it and traditional adaptive algorism when the order of filter was low, effectiveness and superiority of this new algorism were proved. Then design function modules and compile the VHDL language to realise this algorism in FPGA. The result shows that the algorism has great feasibility and application prospect than other traditional algorisms in the application of seismic signal processing.

Keywords: adaptive filter; variable step delay LMS; FPGA; Matlab software

2015, 41(1): 97-99,119  收稿日期: 2013-11-17;收到修改稿日期: 2014-1-23

基金项目: 国家自然科学基金重大科研仪器设备研制专项(41227802);国家杰出青年科学基金项目(40125015)

作者简介: 李梁(1989-),男,四川成都市人,硕士研究生,专业方向为智能仪器。

参考文献

[1] Ennaceur C, Laksimi A, Herve C, et al. Monitoring crack growth in pressure vessel steel by the acoustic emission technique and the method of potential difference[J]. International Journal of Pressure Vessels and Piping,2006,83(1):197-204.
[2] Gurson A L. Continuum theory of ductile rupture by void nucleation an growth: Part I-yield criteria and flow rules for porous ductile media[J]. Transactions of ASME: Journal of Engineering Materials and Technology,1977, 8(1):1-15.
[3] Tvergaard V, Needleman A. Analysis of the cup-cone fracture in a round tensile bar[J]. Acta Metallurgica,1984, 32(1):157-169.
[4] Needleman A, Tvergaard V. Numerical modeling of the ductile-brittle transition[J]. International Journal of Fracture, 2000,101(1/2):73-97.
[5] 郑长卿,周利,张克实. 金属韧性破坏的细观力学及其研究应用[M]. 北京:国防工业出版社,1995:35-58.
[6] Kachanov L M. Time of the rupture process under creep condition[J]. YVZA kad Nauk USSR, Otd Tech Nauk,1958,8(18):26-31.
[7] Tang C A, Xu X H. Evolution and propagation of material defects and Kaiser effect function[J]. Journal of Seismological Research,1990,13(2):203-213.
[8] 余寿文,冯西桥. 损伤力学[M]. 北京:清华大学出版社,1997:103-104.
[9] GB/T 228.1—2010金属材料室温拉伸试验方法[S]. 北京:中国质检出版社,2011.
[10] GB/T 26646—2011无损检测 声发射检测 小型部件声发射检测方法[S]. 北京:中国质检出版社,2012.
[11] 查理R,布鲁克斯. 工程材料的失效分析[M]. 谢文娟,孙家骧,译. 北京:机械工业出版社,2003:123-134.