您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>管线钢半穿孔损伤的金属磁记忆检测研究

管线钢半穿孔损伤的金属磁记忆检测研究

3025    2015-07-06

免费

全文售价

作者:李云飞, 韦利明, 万强, 贾东

作者单位:中国工程物理研究院总体工程研究所, 四川 绵阳 621900


关键词:管线钢;金属磁记忆;半穿孔损伤;无损评估


摘要:

油气运输管道出现穿孔、裂纹及塑性变形等机械损伤后易导致安全隐患并造成重大事故。该文采用金属磁记忆法对半穿孔损伤的X80管线钢试件进行检测分析, 通过金属磁记忆微量磁场检测系统测量机械损伤诱发磁场的法向分量信号, 并采用ARAMIS三维光学全场动态应变测量系统实时获取试件表面应变分布。根据结果得出两者之间的非线性关系, 并验证金属磁记忆法检测管线钢半穿孔机械损伤的可行性, 为X80管线钢构件或输运管道的定量无损评估提供基础依据。


Metal magnetic memory experimental research on semi-perforated damage of pipeline steel

LI Yunfei, WEI Liming, WAN Qiang, JIA Dong

Institute of Systems Engineering, CAEP, Mianyang 621900, China

Abstract: Their mechanical damage such as perforations, cracks and plastic deformations may easily lead to potential safety hazards and major accidents of domestic oil and gas transportation pipelines. The semi-perforated specimens of pipeline steel were detected and analyzed in the way of metal magnetic memory(MMM). Normal components of magnetic memory signals were measured by the self-built micro-magnetic field detection system. Meantime, the strain distribution of specimens was obtained through a 3D optical measurement system. According to the experimental results, a nonlinear correlation has been established between plastic deformation and damage-induced magnetic field intensity. The feasibility of the MMM testing method for semi-perforated mechanical damage detection of pipeline steel was hence verified. The research can provide a basis for quantitative nondestructive evaluation of X80 pipeline steel components and transportation pipelines.

Keywords: pipeline steel;metal magnetic memory;semi-perforated damage;nondestructive evaluation

2015, 41(6): 26-29  收稿日期: 2015-2-5;收到修改稿日期: 2015-3-16

基金项目: 国家自然科学基金项目(11372295, 11302206)中国工程物理研究院科学技术发展基金项目(2014B04021)

作者简介: 李云飞(1986-),男,四川绵阳市人,工程师,硕士,研究方向为电磁无损检测与评估。

参考文献

[1] Doubov A A. Diagnostics of equipment and constructions strength with usage of magnetic memory[J]. Inspection Diagnostics, 2001, 35(6):19-29.
[2] Jiles D C. Theory of magneto mechanical effect[J]. J Appl Phys, 1995, 28(8):1537-1546.
[3] Jiles D C, Li L. A new approach to modeling the magnetomechanical effect[J]. Journal of Applied Physics, 2004, 95(11):7058-7060.
[4] Roskosz M, Gawrilenko P. Analysis of changes in residual magnetic field in loaded notched samples[J]. NDT&E International, 2008(41):570-576.
[5] Roskosz M, Bieniek M. Evaluation of residual stress in ferromagnetic steels based on residual magnetic field measurements[J]. NDT&E International, 2012(45):55-62.
[6] 尹大为, 徐滨士, 董世运, 等. 中碳钢疲劳试验的磁记忆检测[J]. 机械工程学报, 2007, 43(3):60-65.
[7] 董丽虹, 徐滨士, 董世运, 等. 金属磁记忆技术检测低碳钢静载拉伸破坏的实验研究[J]. 材料工程, 2006(3):40-43.
[8] 王丹, 董世运, 徐滨士, 等. 静载拉伸45钢材料的金属磁记忆信号分析[J]. 材料工程, 2008(8):77-80.
[9] 黄松岭, 李路明, 汪来富, 等. 用金属磁记忆方法检测应力分布[J]. 无损检测, 2002, 24(5):212-214.
[10] Wan Q, Wei L M, Li Y F. Dependence of damage-induced magnetization on the plastic deformation for X80 steel[J]. Applied Mechanics and Materials, 2013(330):106-111.