您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>陶瓷材料弹塑性参数仪器化压入测试方法研究

陶瓷材料弹塑性参数仪器化压入测试方法研究

3438    2015-07-06

免费

全文售价

作者:王家梁1, 吕哲源1, 陈向前1, 肖富君2, 孙亮1

作者单位:1. 装甲兵工程学院机械工程系, 北京 100072;
2. 总装备部南京军事代表局, 江苏 南京 210024


关键词:陶瓷材料;仪器化压入;弹性模量;屈服强度;应变硬化指数


摘要:

该文以典型陶瓷材料Si3N4和Al2O3为例, 分别应用材料弹性模量仪器化压入测试中的两种代表性方法Ma方法和Oliver-Pharr方法, 对两种材料的仪器化压入测试结果进行计算。结果表明:Ma方法对陶瓷材料弹性模量的测试误差小于Oliver-Pharr方法。利用两种不同面角的四棱锥压头分别对Si3N4和Al2O3材料进行仪器化压入实验, 并结合有限元数值分析方法, 确定Si3N4材料的塑性参数(屈服强度y=7 800 MPa和应变硬化指数n=0.02)和Al2O3材料的塑性参数(屈服强度y=4 100 MPa和应变硬化指数n=0.025), 从而为进一步研究陶瓷材料力学性能参数仪器化压入识别方法提供一定的理论基础。


Instrumented indentation methodologies for determining the elastic-plastic properties of ceramic materials

WANG Jialiang1, LÜ Zheyuan1, CHEN Xiangqian1, XIAO Fujun2, SUN Liang1

1. Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing 100072, China;
2. Nanjing Military Representative Bureau, General Armament Ministry, Nanjing 210024, China

Abstract: Taking typical ceramic materials (Si3N4 and Al2O3) for example, the two representative methods of instrumented indentation for determining the elastic modulus of the materials (Ma method and Oliver-Pharr method) were employed to calculate the instrumented indentation results of Si3N4 and Al2O3. The results show that the testing error in the elastic modulus of ceramic materials determined from the Ma method is lower compared to the Oliver-Pharr method. The instrumented indentation experiments of Si3N4 and Al2O3 were conducted by respectively using two pyramid indenters of different face angles. In addition, the finite element analysis method was applied as well to determine the plastic parameters of Si3N4 (yield strength σy=7 800 MPa and strain hardening exponent n=0.02) and Al2O3 (yield strength σy=4 100 MPa and strain hardening exponent n=0.025). This paper has provided a theoretical foundation for further studying the instrumented indentation method of determining the mechanical properties of ceramic materials.

Keywords: ceramic materials;instrumented indentation;elastic modulus;yield strength;strain hardening exponent

2015, 41(6): 12-17  收稿日期: 2014-11-13;收到修改稿日期: 2015-1-20

基金项目: 军队科研计划项目(2014CJ011)

作者简介: 王家梁(1986-),男,北京市人,博士,研究方向为材料力学性能测试方法。

参考文献

[1] Sakharova N A, Oliveira M C, Antunes J M, et al. On the determination of the film hardness in hard film/substrate composites using depth-sensing indentation[J]. Ceramics International, 2013, 39(6):6251-6263.
[2] Liao Y G, Zhou Y C, Huang Y L, et al. Measuring elastic-plastic properties of thin films on elastic-plastic substrates by sharp indentation[J]. Mechanics of Materials, 2009, 41(3):308-318.
[3] Toparli M, Koksal N S. Hardness and yield strength of dentin from simulated nano-indentation tests[J]. Computer Methods and Programs in Biomedicine, 2005, 77(3):253-257.
[4] Randall N X, Vandamme M, Ulm F J. Nanoindentation analysis as a two-dimensional tool for mapping the mechanical properties of complex surfaces[J]. Journal of Material Research, 2009, 24(3):679-690.
[5] Li Y P, Zhu X F, Tan J, et al. Comparative investigation of strength and plastic instability in Cu/Au and Cu/Cr multilayers by indentation[J]. Journal of Material Research, 2009, 24(3):728-735.
[6] Wei Z, ZHANG G, Chen H, et al. A simple method for evaluating elastic modulus of thin films by nanoindentation[J]. Journal of Material Research, 2009, 24(3):801-815.
[7] Rocio S, Adrian P, Cisilino, et al. Determination of the Drucker-Prager parameters of polymers exhibiting pressure-sensitive plastic behaviour by depth-sensing indentation[J]. International Journal of Mechanical Sciences, 2011, 53(6):471-478.
[8] Alemdar H, Zahir M. Fast inversion algorithm for identification of elastoplastic properties of power hardening materials from limited spherical indentation tests[J]. International Journal of Non-Linear Mechanics, 2012, 47(5):526-536.
[9] 马德军. 材料力学性能仪器化压入测试原理[M]. 北京:国防工业出版社, 2010:21-22.
[10] 马德军. 材料弹性模量的仪器化压入识别方法[J]. 中国有色金属学报, 2010, 20(12):2336-2343.
[11] 马德军. 仪器化微米压入测试材料杨氏模量的方法:中国, G01N 3/42, CN101710046[P].2010-05-19.
[12] 马德军. 仪器化纳米压入测试材料弹性模量的方法:中国, G01N 3/00, CN101788420[P].2010-07-28.
[13] Pharr G M, Oliver W C, Brotzen F R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation[J]. Journal of Material Research, 1992, 7(3):613-617.
[14] Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J]. Journal of Material Research, 1992, 7(6):1564-1583.
[15] Oliver W C, Pharr G M. Measurement of hardness and elastic modulus by instrumented indentation:Advances in understanding and refinements to methodology[J]. Journal of Material Research, 2004, 19(1):3-20.
[16] ISO 14577—2002 Metallic materials instrumented indentation test for hardness and materials parameter[S]. British BSI, 2002.
[17] 马德军, 宋仲康, 郭俊宏, 等. 一种高精度压入仪及金刚石压头压入试样深度的计算方法:中国, G01N 3/42, CN102288500A[P]. 2011-12-21.
[18] Oliver D J, Lawn B R, Cook R F, et al. Giant pop-ins in nanoindented silicon and germanium caused by lateral cracking[J]. Journal of Material Research, 2008, 23(2):297-301.
[19] Riedel R, Chen I W. Ceramics science and technology volume 2: Properties[M]. Weinheim:WILEY-VCH Verlag GmbH & Co. KGaA, 2010:12-62.
[20] Dao M, Ghollacoop N, Van Vliet K J, et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation[J]. Acta Materialia, 2001, 49(19):3899-3918.
[21] Pelletier H, Krier J, Cornet A, et al. Limits of using bilinear stress-strain curve for finite element modeling of nanoindentation response on bulk materials[J]. Thin Solid Films, 2000, 370(1):147-155.