您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于光纤光谱仪的微型分光光度计

基于光纤光谱仪的微型分光光度计

2857    2015-08-04

免费

全文售价

作者:王彤1, 曾英1,2, 王云光3, 徐进勇3

作者单位:1. 成都理工大学材料与化学化工学院, 四川 成都 610059;
2. 矿产资源化学四川省高校重点实验室, 四川 成都 610059;
3. 成都理工大学地球科学学院, 四川 成都 610059


关键词:微量分光光度计;光纤光谱仪;铁


摘要:

结合光纤光源、50 L微量比色皿、微型光纤光谱仪,设计一款可用于微量样品吸光度测定的微型分光光度计。并用邻二氮菲测铁的经典分光光度分析方法,将该微型光度计与传统紫外可见分光光度计进行比较,结果表明该微型分光光度计的精密度、灵敏度、线性范围和线性相关性等性能均与传统紫外可见分光光度计一致。最后通过国家一级标准物质测试结果,验证该微量光度计能满足实际样品的准确测定。


Micro spectrophotometer based on fiber spectrophotometer

WANG Tong1, ZENG Ying1,2, WANG Yunguang3, XU Jinyong3

1. College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China;
2. Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, Chengdu 610059, China;
3. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China

Abstract: A micro spectrophotometer was developed for determination of micro volume solution based on the fiber light source, 50 μL micro volume cuvettea and a minitype-fiber-spectrometer. The performances of this micro spectrophotometer were compared with traditional UV-Vis spectrophotometer by classical spectrophotometry method of determination of iron phenanthroline (phen) spectrophotometry. The results showed that the micro spectrophotometer was consistent with traditional UV-vis spectrophotometer in the precision,sensitivity, linearity range, correlation coefficient. Finally, The developed system was applied to the determination of national standard reference materials, such as soil, stream sediment an rock. The results verify the reliability of the instrumental setup for determination of real samples.

Keywords: micro spectrophotometer;fiber spectrophotometer;iron

2015, 41(7): 73-75  收稿日期: 2014-12-6;收到修改稿日期: 2015-2-24

基金项目: 国际科技合作计划(2013DFA21690);教育部博士点新教师基金(20105122120010)

作者简介: 王彤(1972-),女,四川成都市人,博士,研究方向为地球化学。

参考文献

[1] 郭敬,杨小秋. 微波消解-纳氏试剂比色-分光光度法测定烟叶中的总氮含量[J]. 中国测试,2013(S2):54-56.
[2] 胡晓荣,刘健,周莉. 紫甘蓝花青素分光光度法同时测定微量铝和铁[J]. 中国测试,2013(3):38-41.
[3] Ríos A, Escarpa A, González M C, et al. Challenges of analytical microsystems[J]. TrAC Trends in Analytical Chemistry,2006,25(5):467-479.
[4] Lavilla I, Romero V, Costas I, et al. Greener derivatization in analytical chemistry[J]. TrAC Trends in Analytical Chemistry,2014(61):1-10.
[5] Armenta S, Garrigues S, Guardia M. Green analytical chemistry[J]. TrAC Trends in Analytical Chemistry,2008,27(6):497-511.
[6] Kokosa J M. Advances in solvent-microextraction techniques[J]. TrAC Trends in Analytical Chemistry,2013(43):2-13.
[7] Wen X, He L, Shi C, et al. Application of rapid cloud point extraction method for trace cobalt analysis coupled with spectrophotometric determination[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2013(115):452-456.
[8] Pena-Pereira F, Costas-Mora I, Romero V, et al. Advances in miniaturized UV-Vis spectrometric systems[J]. TrAC Trends in Analytical Chemistry,2011,30(10):1637-1648.
[9] Shokoufi N, Shemirani F, Memarzadeh F. Fiber optic-linear array detection spectrophotometry in combination with cloud point extraction for simultaneous preconcentration and determination of cobalt and nickel[J]. Analytica Chimica Acta,2007,601(2):204-211.