您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>Pt-Fe(Ⅲ)/多壁碳纳米管修饰电极测定亚硫酸根

Pt-Fe(Ⅲ)/多壁碳纳米管修饰电极测定亚硫酸根

2954    2015-08-04

免费

全文售价

作者:郝玉翠, 李艾

作者单位:唐山学院环境与化学工程系, 河北 唐山 063000


关键词:修饰电极;铂微粒;Fe(Ⅲ);多壁碳纳米管;亚硫酸根;循环伏安法


摘要:

为建立一种简便、快速的亚硫酸根分析方法,采用滴涂法和电化学沉积法制备Pt-Fe(Ⅲ)/多壁碳纳米管(MWCNTs)修饰玻碳电极(Pt-Fe(Ⅲ)/MWCNTs/GCE),通过循环伏安法研究亚硫酸根在该修饰电极上的电化学行为,并优化实验条件,在此基础上建立一种伏安法测定亚硫酸根的新方法。亚硫酸根的氧化峰电流与其物质量浓度在8.010-6~7.010-3 mol/L范围内呈良好的线性关系(r=0.998 9),检测限为3.010-6 mol/L,水样中亚硫酸根的加标回收率在98%~102%之间。该方法具有操作简便、分析速度快和线性范围宽的优点,可用于实际样品中亚硫酸根的测定。


Determination of sulfite using Pt-Fe(Ⅲ) and multi-walled carbon nanotubes modified electrodes

HAO Yucui, LI Ai

Department of Environmental and Chemical Engineering, Tangshan College, Tangshan 063000, China

Abstract: In order to establish a simple and fast method for determining sulfite,the platinum-Fe(Ⅲ) and multi-walled carbon nanotubes (MWCNTs) modified glassy carbon electrodes(Pt-Fe(Ⅲ)/MWCNTs/GCE) were prepared by drop coating and electrochemical deposition. The electrochemica1 behaviors of sulfite on Pt-Fe(Ⅲ)/MWCNTs/GCE were studied by cyclic voltammetry. The experimental conditions were optimized and a voltammetric method for determining sulfite was established. The oxidation peak current of sulfite is proportional to the concentration of sulfite over the range of 8.0×10-6-7.0×10-3 mol/L with the detection limit of 3.0×10-6 mol/L(r=0.998 9). The recovery rate of sulfite in water samples was found to be in the range of 98%-102%. This method has the advantages of simple operation,fast determination and wide linear range. It is suitable for determining sulfite in real sample.

Keywords: modified electrode;platinum particle;ferric iron;multi-walled carbon nanotubes;sulfite;cyclic voltammetry

2015, 41(7): 41-45  收稿日期: 2014-11-12;收到修改稿日期: 2015-1-9

基金项目: 河北省高等学校科学技术研究项目(z2014016);唐山市科技局项目(13130248z)

作者简介: 郝玉翠(1980-),女,河北唐山市人,讲师,博士,研究方向为电化学分析。

参考文献

[1] 周德庆,张双灵,辛胜昌. 亚硫酸盐在食品加工中的作用及其应用[J]. 食品科学,2004,25(12):198-201.
[2] Segundo M A, Rangel A O S S, Cladera A, et al. Multisyringe flow system:determination of sulfur dioxide in wines[J]. Analyst,2000(125):1501-1505.
[3] Bonifacio R L, Coichev N. Chemiluminiscent determination of sulfite traces based on the induced oxidation of Ni(II)/tetraglycine complex by oxygen in the presence of luminol:mechanistic considerations[J]. Analytica Chimica Acta,2004(517):125-130.
[4] Yang X F, Guo X Q, Zhao Y B. Novel spectrofluorimetric method for the determination of sulfite with rhodamine B hydrazide in a micellar medium[J]. Analytica Chimica Acta,2002(456):121-128.
[5] Su X, Wei W, Nie L, et al. Flow injection determination of sulfite in wines and fruit juices by using a bulk acoustic wave impedance sensor coupled to a membrane separation technique[J]. Analyst,1998(123):221-224.
[6] Situmorang M, Hibbert D B, Gooding J J, et al. A sulfite biosensor fabricated using electrodeposited polytyramine: application to wine analysis[J]. Analyst,1999(124):1775-1779.
[7] Alamo Lori Shayne T, Tangkuaram T, Satienperakul S. Determination of sulfite by pervaporation-flow injection with amperometric detection using copper hexacyanoferrate-carbon nanotube modified carbon paste electrode[J]. Talanta,2010(81):1793-1799.
[8] Devaramani S, Malingapp P. Synthesis and characterization of cobalt nitroprusside nano particles:Application to sulfite sensing in food and water samples[J]. Electrochimica Acta,2012(85):579-587.
[9] Heli H, Eskandari I, Sattarahmady N, et al. Cobalt nanoflowers:Synthesis, characterization and derivatization to cobalt hexacyanoferrate-Electrocatalytic oxidation and determination of Sulfite and nitrite[J]. Electrochimica Acta,2012(77):294-301.
[10] El-Nagar G A, Mohammad A M, El-Deab M S, et al.Acrylonitrile-contamination induced enhancement of formic acid electro-oxidation at platinum nanoparticles modified glassy carbon electrodes[J]. Journal of Power Sources,2014(265):57-61.
[11] Zhou X C, Zheng X Y, Lv R X, et al. Electrodeposition of platinum on poly (glutamic acid) modified glassy carbon electrode for non-enzymatic amperometric glucose detection[J]. Electrochimica Acta, 2013(107):164-169.
[12] Zhou Y, Xian H Y, Li F, et al. Construction of hybrid nanocomposites containing Pt nanoparticles and poly(3-methylthiophene) nanorods at a glassy carbon electrode:Characterization,electrochemistry,and electrocatalysis[J]. Electrochimica Acta,2010(55):5905-5910.
[13] Afkhami A, Soltani-Felehgari F, Madrakian T. Highly sensitive and selective determination of thiocyanate using gold nanoparticles surface decorated multi-walled carbon nanotubes modified carbon paste electrode[J]. Sensors and Actuators B,2014(196):467-474.
[14] Xiao F, Mo Z R, Zhao F Q. Ultrasonic-electrodeposition of gold-platinum alloy nanoparticles on multi-walled carbon nanotubes-ionic liquid composite film and their electrocatalysis towards the oxidation of nitrite[J]. Electrochem Commun,2008(10):1740-1743.
[15] 郝玉翠. 铂微粒修饰电极伏安法测定亚硫酸根[J]. 广东化工,2014,41(13):279-280.
[16] Bard A J, Faulkner L R. Electrochemical methods[M].New York:John Wiley Sons,1980:540.
[17] Wang S Q, Yin Y M, Lin X Q. Cooperative effect of Pt nanoparticles and Fe(Ⅲ) in the electrocatalytic oxidation of nitrite[J]. Electrochemistry Communications,2004(6):259-262.
[18] Rawal R, Pundir C S. Development of electrochemical sulfite biosensor based on SOX/PB-NPs/PPY modified Au electrode[J]. Biochemical Engineering Journal,2013(71):30-37.
[19] Zhao K, He Y, Zhu C Y, et al. Electrochemical behavior of propranolol hydrochloride in neutral solution on platinum nanoparticles doped multi-walled carbon nanotubes modified glassy carbon electrode[J]. Electrochimica Acta,2012(80):405-410.