您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>半胱氨酸抑制二氧化铈纳米颗粒化学发光

半胱氨酸抑制二氧化铈纳米颗粒化学发光

3300    2015-08-04

免费

全文售价

作者:石文兵1, 戚景南2, 贺薇1, 万邦江1

作者单位:1. 无机特种功能材料重庆市重点实验室, 长江师范学院化学化工学院, 重庆 408100;
2. 唐山科技职业技术学院, 唐山 063001


关键词:半光氨酸;抑制;二氧化铈纳米颗粒;化学发光


摘要:

在碱性条件下,二氧化铈纳米颗粒能够有效催化过氧化氢-鲁米诺体系的化学发光。然而,当加入半胱氨酸,该体系的化学发光强度得到极大抑制。该文详细讨论发光条件,如二氧化铈纳米颗粒、过氧化氢、鲁米诺等质量浓度及鲁米诺pH对发光强度的影响。在最佳试验条件下,探讨半胱氨酸的抑制特性,在一定范围内抑制强度与半胱氨酸的质量浓度成正比。线性范围为0.01~1.8 g/mL,(r=0.994 6),检出限(3)为1.6 ng/mL,对质量浓度为1.0 g/mL的半胱氨酸进行11次平行测定,RSD为0.72%。该法有望用于测定实际样品中半胱氨酸的含量。


The chemiluminescence inhibition of cysteine on ceria nanoparticles

SHI Wenbing1, QI Jingnan2, HE Wei1, WAN Bangjiang1

1. Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China;
2. Tangshan Vocational College of Science and Technology, Tangshan 063001, China

Abstract: In basic conditions, the luminol-H2O2 chemiluminescence system can be effectively catalyzed by ceria nanoparticles, however, the chemiluminescence intensity was tremendously inhibited when the cysteine was added into this system. In this paper, the effects of the chemiluminescence conditions such as ceria nanoparticles concentration, luminuol concentration, H2O2 concentration and the pH in luminol solution were investigated in detail. Under optimal conditions,the inhibition properties of cysteine have been investigated, in certain concentration range, the inhibition intensities were proportional to the concentrations of cysteine. The linear range was 0.01-1.8 μg/mL (r=0.994 6), and the detection limit (3σ) was 1.6 ng/mL. The relative standard deviation (RSD) was 0.72% for 1.0 μg/mL cysteine (n=11). The method can be expected to used to determine cysteine in real samples.

Keywords: cysteine;inhibition;ceria nanoparticles;chemiluminescence

2015, 41(7): 37-40  收稿日期: 2015-2-7;收到修改稿日期: 2015-3-24

基金项目: 国家自然科学基金项目(21275021);重庆市教委科学研究项目(KJ1401201,KJ1401220)

作者简介: 石文兵(1976-),男,湖南凤凰县人,副教授,博士,主要从事药物分析。

参考文献

[1] Chwatko G, Kuzniak E, Kubalczyk P, et al. Determination of cysteine and glutathione in cucumber leaves by HPLC with UV detection[J]. Analytical Methods,2014,6(19):8039-8044.
[2] Yoshitake M, Nohta H, Sejima N, et al. Selective determination of cysteines through precolumn double-labeling and liquid chromatography followed by detection of intramolecular FRET[J]. Analytical and Bioanalytical Chemistry,2011,399(4):1665-1675.
[3] Montaseri H, Yousefinejad S. Design of an optical sensor for the determination of cysteine based on the spectrophotometric method in a triacetylcellulose film: PC-ANN application[J]. Analytical Methods,2014,6(21):8482-8487.
[4] Khajehsharifi H, Shenini A. A selective naked-eye detection and determination of cysteine using an indicator-displacement assay in urine sample[J]. Sensors and Actuators B-Chemical,2014(199):457-462.
[5] Liu X C, Zhu Y C, Zhu Z Q, et al. Solid phase microextraction and selective determination of cysteine in whole blood by cyclic voltammetry with silver nanoparticles modified clustered carbon fiber electrodes[J]. Analytical Methods,2012,4(10):3256-3260.
[6] Farhadi K, Forough M, Pourhossein A, et al. Highly sensitive and selective colorimetric probe for determination of L-cysteine in aqueous media based on Ag/Pd bimetallic nanoparticles[J]. Sensors and Actuators B-Chemical,2014(202):993-1001.
[7] Wei X Y, Qi L, Tan J J, et al. A colorimetric sensor for determination of cysteine by carboxymethyl cellulose-functionalized gold nanoparticles[J]. Analytica ChimicaActa,2010,671(1-2):80-84.
[8] Nezamzadeh-ejhieh A, Hashemi H S. Voltammetric determination of cysteine using carbon paste electrode modified with Co(II)-Y zeolite[J]. Talanta,2012(88):201-208.
[9] Chen S, Fan Y, Yang Y, et al. Determination of cysteine based on fluorescence enhancement of CdS quantum dots with Cd2+ rich surface[J]. Chinese Journal of Analytical Chemistry,2012,40(1):173-176.
[10] Chen S, Hai X, Chen X W, et al. In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose[J]. Analytical Chemistry,2014,86(13):6689-6694.
[11] Abdukayum A, Yang C X, Zhao Q, et al. Gadolinium complexes functionalized persistent luminescent nanoparticles as a multimodal probe for near-infrared luminescence and magnetic resonance imaging in vivo[J]. Analytical Chemistry,2014,86(9):4096-4101.
[12] Iranifam M. Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles[J]. Trac-Trends in Analytical Chemistry,2013(51):51-70.
[13] He Y, He X, Liu X Y, et al. Dynamically tunable chemiluminescence of luminol-functionalized silver nanoparticles and Its application to protein sensing arrays[J]. Analytical Chemistry,2014,86(24):12166-12171.
[14] 石文兵,刘希东,张小丹,等. 二氧化铈纳米微粒过氧化物酶活性及其在葡萄糖检测中的应用[J].中国科学:化学,2014,44(10):1633-1640.