您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>核磁共振技术检测钚复合构件

核磁共振技术检测钚复合构件

2947    2015-09-09

免费

全文售价

作者:苟振志1,2, 何彬1, 赵尚文2, 钟依禄2, 李俊3, 喻凤梅1

作者单位:1. 第二炮兵工程大学, 陕西 西安 710025;
2. 96421部队, 陕西 宝鸡 721012;
3. 第二炮兵装备研究院, 北京 100085


关键词:核磁共振;钚复合构件;磁通测量;仿真计算


摘要:

该文仿真计算在不同外磁感应强度下,钢铍钚复合构件各球壳静磁场分布及缺陷样品磁场分布情况。结果表明:不同的磁场强度和磁导率对复杂金属结构的磁场分布不一样,总的来说,磁感应强度越大,磁导率越小,则各球壳层磁场强度越大。外磁场能够深入钚复合构件多层结构且保持一定强度和均匀性,满足声-核磁共振无损检测系统的要求。最后对无缺陷和有缺陷的样品进行磁场分布模拟,对比结果表明:钚复合构件中气泡、裂纹等缺陷可通过探测磁场分布进行定性判断,为下一步声核磁共振检测技术奠定理论基础。


Nuclear magnetic resonance technique for detection of plutonium component

GOU Zhenzhi1,2, HE Bin1, ZHAO Shangwen2, ZHONG Yilu2, LI Jun3, YU Fengmei1

1. Second Artillery Engineering University, Xi'an 710025, China;
2. Troops No.96421, Baoji 721012, China;
3. The Second Artillery Equipment Research Institute, Beijing 100085, China

Abstract: In this paper, the simulation calculation is used to test the magnetic field fall under the shell layers of the steel-beryllium-plutonium composite balloon subassembly and the distribution of the magnetic field in the objection sample in different magnetic strength fields. The result shows that the magnetic field strength and permeability are different for complex metal structure of the magnetic field-distribution. In general, the larger the magnetic induction intensity is, the smaller the ball shell permeability, the greater the magnetic field strength. the best measure effect in the experiment was obtained when the magnetic field strength of 10T was operated. The results of comparing the simulation results of magnetic field distribution of defects in the sample with the experiment results shows that the researching cracks and other defects is feasible through the magnetic field component in the bubbles.

Keywords: nuclear magnetic resonance;plutonium components;flux measure;simulation calculation

2015, 41(8): 113-117  收稿日期: 2014-10-11;收到修改稿日期: 2014-11-28

基金项目: 国家自然科学基金(51271198,A040103)

作者简介: 苟振志(1978-),男,四川通江县人,工程师,博士,主要从事无损探伤及状态监测研究。

参考文献

[1] 苟振志,何彬,喻凤梅,等. 铅组件模拟钚组件氧化腐蚀性研究[J]. 无损检测,2014,36(1):5-10.
[2] 钚冶金[M]. 北京:中国科学院原子核科学委员会编辑委员会,1967:57-69.
[3] 强亦忠. 常用核辐射数据手册[M]. 北京:原子能出版社,1990:113-125.
[4] 杜祥琬. 核军备控制的科学技术基础[M]. 北京:国防工业出版社,1996:72-79.
[5] 李彬. 军备控制理论与分析[M]. 北京:国防工业出版社,2006:60-89.
[6] Proctor W G, Tantilla W H. Influence of ultrasonic energy on the relaxation of chlorine nuclei in sodium chlorate[J]. Phys Rev,1956(101):1757-1763.
[7] Bolef D I, Menes M. Nuclear magnetic resonance acoustic absorption in KI and KBr[J]. Phys Rev,1959(114):1441-1451.
[8] Menes D I. Bolef observation of nuclear resonance acoustic absorption of In115 in InSb[J]. Phys Rev,1958(109):218-219.
[9] Bolef D I. Acoustic techniques in magnetic resonance[J]. Science,1962(136):359-369.
[10] Gregory E H, Bommel H E. Acoustic excitation of nuclear spin resonance in single crystalline tantalum[J]. Phys Rev Lett,1965(15):404-406.