您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于TBVMC湿式冷却塔热力性能快速评估方法

基于TBVMC湿式冷却塔热力性能快速评估方法

2585    2016-01-22

免费

全文售价

作者:刘桂雄1, 刘文浩1, 洪晓斌1, 谭小卫2

作者单位:1. 华南理工大学机械与汽车工程学院, 广东广州 510640;
2. 新菱空调(佛冈)有限公司, 广东清远 511675


关键词:湿式冷却塔; 热力性能; TBVMC; 快速;


摘要:

针对湿式冷却塔内填料区传热传质过程,基于Merkel模型、e-NTU模型和Poppe模型3种冷却塔分析模型,讨论冷却塔热力性能快速评估原理。建立气温、水温变化约束关系,构建简化冷却塔热力性能模型,提出基于温度边值测量约束(temperature boundary value measurement constraints,TBVMC)的湿式冷却塔热力性能快速评估方法。进行冷却塔热力性能评估实验,并分别利用Merkel、e-NTU、Poppe、TBVMC模型进行热力性能评估。结果表明:TBVMC模型与Poppe模型(作为最可信赖值)相比,均方根误差为5.89%,可减少评估时间2.224 4 s。


Thermal performance rapid evaluation method for wet cooling towers based on TBVMC

LIU Gui-xiong1, LIU Wen-hao1, HONG Xiao-bin1, TAN Xiao-wei2

1. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China;
2. SINRO(Fogang) Air-conditioning & Cooling Equipment Co., Ltd., Qingyuan 511675, China

Abstract: Aiming at the heat and mass transfer process of wet cooling tower fill area,the thermal performance rapid evaluation theory for the cooling tower is analyzed based on Merkel,e-NTU,and Poppe methods. The linear relation of air temperature and water temperature change and a simplified model of the cooling tower thermal performance are built. The thermal performance rapid evaluation algorithm based on temperature boundary value measurement constraints (TBVMC) is presented for the cooling tower. Finally,the cooling experiment is performed. Cooling tower thermal performance is evaluated using Merkel, e-NTU, Poppe, and TBVMC model respectively, result shows TBVMC model effectively reduces evaluation time for about 2.224 4 s under the RMSE of 5.89% compared with Poppe model which is treated as the most reliable value.

Keywords: wet cooling tower; thermal performance; TBVMC; rapid

2014, 40(6): 1-5  收稿日期: 2014-6-11;收到修改稿日期: 2014-8-2

基金项目: 广东省中小企业技术创新专项(2012CY166)

作者简介: 刘桂雄(1968-),男,广东揭阳市人,教授,博士生导师,主要从事智能传感与检测技术研究。

参考文献

[1] Merkel F. Verdunstungskuhlung[D]. Berlin:VDI Forschungsarbeiten, 1925.
[2] Jaber H, Webb R L. Design of cooling towers by effectiveness-NTU method[J]. Heat Transfer,1989(111):837-843.
[3] Poppe M, Rogener H. Berechnung von ruckkuhlwerken[M]. Berlin:VDI-Warmeatlas,1991:1-15.
[4] Kloppers J C, Kroger D G. Cooling tower performance evaluation:Merkel, Poppe, and e-NTU methods of analysis[J]. Engineering for Gas Turbines and Power, 2005(127):1-7.
[5] Grobbelaar P J, Reuter H C R, Bertrand T P. Performance characteristics of a trickle fill in cross-and counter-flow configuration in a wet-cooling tower[J]. Applied Thermal Engineering,2013,50(1):475-484.
[6] Kloppers J C. A critical evaluation and refinement of the performance prediction of wet cooling towers[D]. Stellenbosch:University of Stellenbosch,2003.
[7] Kloppers J C, Kr觟ger D G. A critical investigation into the heat and mass transfer analysis of counterflow wetcooling towers[J]. International Journal of Heat and Mass Transfer,2005,48(3):765-777.
[8] Zhou L X, Liu Z L, Gong X M. Numerical study on wet cooling tower with catheter pipes[J]. Journal of North China Electric Power University (Natural Science Edition),2011,38(6):96-100,106.
[9] Kloppers J C, Kr觟ger D G. A critical investigation into the heat and mass transfer analysis of crossflow wet-cooling towers[J]. Numerical Heat Transfer, Part A:Applications,2004,46(8):785-806.
[10] 刘桂雄,叶季衡. 一种冷却塔热力性能评估方法及系统:中国,CN103293013A[P]. 2013-09-11.
[11] Kloppers J C, Kr觟ger D G. Cost optimization of cooling tower geometry[J]. Engineering Optimization,2004,36(5):575-584.
[12] 刘桂雄,叶季衡,肖若,等. 冷却塔热力性能在线监测装置及系统研制[J]. 中国测试,2013,39(4):64-68.