您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>海水密度的人工跃变技术研究

海水密度的人工跃变技术研究

2963    2017-10-11

免费

全文售价

作者:何升阳, 金良安, 张志友, 胡广友

作者单位:海军大连舰艇学院航海系, 辽宁 大连 116018


关键词:舰船;海水密度;人工跃变;军事应用


摘要:

提出一种海水密度的人工跃变技术,其核心思想是利用专门的材料和设备,通过特定机理在设定海域产生大量均匀分布的气泡,以形成足够规模的低密度海水区域,从而影响潜艇正常航行。通过验证性实验,分析不同大小及数密度的人工气泡制造海水跃变的实施效果和影响规律。实验结果表明:在静水中,气泡越小对潜艇航行掉深影响越大;在一定范围内,适当增加气泡的数密度能明显加大掉深深度。研究结论证明海水密度人工跃变思想的可行性与有效性,为潜艇军事打击手段的进一步完善以及装置的研制提供必要的基础和依据。


Research on artificial pycnocline technology of seawater density

HE Shengyang, JIN Liang'an, ZHANG Zhiyou, HU Guangyou

Department of Navigation, Dalian Naval Academy, Dalian 116018, China

Abstract: An artificial pycnocline technology of seawater density is proposed in the paper and its core concept is to use special materials and equipment to generate a large number of evenly distributed bubbles in the special sea area via specific mechanism, so as to form a low-density sea water area in sufficient scale and affect the normal navigation of submarine. Through a specialized verification test, the effect and influence laws of seawater pycnocline caused by different artificial bubble radius and bubble number density are analyzed and the test results show that, in a stationary flow field, the influence on senktiefe of submarine-navigation is deeper as the bubble size is smaller, and an appropriate increase in the number density of bubble can significantly increase the senktiefe in a certain range. Research conclusion proves the feasibility and effectiveness of the artificial pycnocline technology of seawater density, which will provide a foundation and basis for further perfection of submarine military strike means and device development.

Keywords: warship;seawater density;artificial pycnocline;military application

2017, 43(9): 139-142  收稿日期: 2017-01-19;收到修改稿日期: 2017-03-25

基金项目: 海军国防预研课题(401040301)

作者简介: 何升阳(1992-),男,重庆市人,硕士研究生,专业方向为军事航海安全保障与防护技术。

参考文献

[1] 郝英泽,何斌. 海水密度变化对潜艇悬停垂向运动的影响仿真研究[J]. 船海工程,2008(2):117-119.
[2] 丁风雷,刘常波. 海水密度变化对潜艇运动状态的影响[J].四川兵工学报,2012(4):11-13.
[3] FULLEKRUG M, MEZENTSEV A, WATSON R, et al. Array analysis of electromagnetic radiation from radio transmitters for submarine communication[J]. Geophysical Research Letters,2015,41(24):9143-9149.
[4] REGEV A, HASSID S, POREH M. Calculation of entrainment in density jumps[J]. Environmental Fluid Mechanics,2006,6(5):407-414.
[5] 张林. 浅海负跃层对声传播影响的仿真研究[J]. 声学技术, 2013(12):69-70.
[6] CHEN B B, ZOU D H. Altered seawater salinity levels affected growth and photosynthesis of ulva fasciata(Ulvales, Chlorophyta)germlings[J]. Acta Oceanologica Sinica,2015(8):108-113.
[7] JABALE M. The pillars of submarine safety[J]. United States Naval Institute Proceedings,2014,140(6):1336.
[8] 李帅,张阿漫. 上浮气泡在壁面处的弹跳特性研究[J]. 物理学报,2014(5):1-7.
[9] 王诗平,朱枫. 爆炸气泡与舰船相互作用的相似性方法研究[J]. 中国造船,2012(2):30-38.
[10] GONG C G, ZHU X, PAN W, et al. Research on submarine straight-line track control underwater based on nonlinear proportion differential[J]. Mathematical Problems in Engineering,2016:8432764.
[11] 王诗平,张阿漫. 气泡与弹性边界的相互作用研究[J]. 力学学报,2011(4):688-698.