您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>多矩形空腔阵列的发射率研究

多矩形空腔阵列的发射率研究

2922    2017-11-01

免费

全文售价

作者:李文军, 李佳琪, 徐永达, 郑永军

作者单位:中国计量大学计量测试工程学院, 浙江 杭州 310018


关键词:空腔;发射率;红外热像仪;热分辨力


摘要:

为形成可调节的温差,该文设计一种多矩形空腔阵列,阵列由3个分体单元组成,每个单元包含有确定深度和宽度比的矩形空腔。使用红外热像仪对阵列上端面拍摄热图像,不同单元的表观温度各不相同。通过理论计算给出单元表面发射率的计算公式,通过实验测量单元表面发射率,并将理论计算值与实验测量值进行对比。结果表明:在深度和宽度较大时,计算值与测量值较为接近,在深度和宽度较小时两者差值较大。实验证实多矩形空腔阵列可用于红外成像设备的测试和校准等用途。


Research on the emissivity of multi-rectangular cavity array

LI Wenjun, LI Jiaqi, XU Yongda, ZHENG Yongjun

College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, China

Abstract: In order to take adjustable temperature difference,a multi-rectangular cavity array was designed which consisted of three units,and each unit had a rectangular cavity with certain depth and width ratio.Infrared thermal imager was used to take thermal images on end face on array,and the apparent temperature of different units was different and it was determined by the emissivity difference of unit surface.The emissivity of unit surface depended on the depth and width ratio of rectangular cavity.The surface emissivity calculation formula was obtained based on theoretical calculation,and the surface emissivity was measured by test.Besides,the theoretical calculation was compared with the measured values.The results show that when depth and width ratio is large,the calculated value is close to the measured value,and the difference value is larger when depth and width ratio is small.The experiment proves that the multi-rectangular cavity can be used to measure and calibrate in infrared thermal imager and so on.

Keywords: cavity;emissivity;infrared thermal imager;thermal resolution

2017, 43(10): 119-122,144  收稿日期: 2016-12-14;收到修改稿日期: 2017-02-20

基金项目: 国家科技重大专项(2015ZX02101)

作者简介: 李文军(1970-),男,山西忻州市人,副教授,硕士,研究方向为热工参数自动检测与控制。

参考文献

[1] VOLLMER M, LLMANN K P. Infrared Thermal Imaging[M]. Germany:WILEY-VCH Verlag GmbH & Co.KGaA, 2010:47-49.
[2] 杨立,杨桢. 红外热成像测温原理与技术[M]. 北京:科学出版社,2012:24-28.
[3] CHRZANOWSKI K. Evaluation of infrared collimators for testing thermal imaging systems[J]. Opto-Electronics Review,2007,15(2):82-87.
[4] Measurement of the minimum resolvable temperature di-fference(MRTD) of thermal camera:NATO STANAG 4349[S]. Brussels:North Atlantic Treaty Organization,1995.
[5] 热像仪校准规范:JJF 1187-2008[S]. 北京:中国计量出版社,2008.
[6] 工业检测型红外热像仪:GB/T 19807-2005[S]. 北京:中国标准出版社,2005.
[7] 田留德,刘朝晖,赵建科,等. 红外热像仪MRTD测试方法研究[J]. 红外技术,2015,37(5):368-373.
[8] KRAPELS K, DRIGGERS R, VOLLMERHAUSEN R, et al. Minimum resolvable temperature difference(MRT):procedure improvements and dynamic MRT[J]. Infrared Physics & Technology,2002,43(1):17-31.
[9] CHRZANOWSKI K. Aminimum-resolvable-temperature difference model for simplified analysis[J]. Infrared Physics,1991,31(4):313-318.
[10] 李吉林,肖功弼,俞伦鹏. 辐射测温和检定/校准技术[M]. 北京:中国计量出版社,2009:152-155.
[11] MEKHONTSEV S N, KHROMCHENKO V B. NIST radiance temperature and infrared spectral radiance scales at near-ambient temperatures[J]. International Journal of Thermophysics,2008,29(3):1026-1040.
[12] DULSKI R, PIATKOWSKI T, POLAKOWSKI H. Sectoral thermal emitter for testing of modern IR systems[J]. Infrared Physics & Technology,2014(67):14-20.
[13] Standard test methods for measuring and compensating for emissivity using infrared imaging radiometers:ASTM E1933-1999a(2005)e1[S]. West Conshohocken:ASTM,2005.