您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于数值模拟和波形分析的声发射传感器安装策略

基于数值模拟和波形分析的声发射传感器安装策略

2759    2017-12-04

免费

全文售价

作者:顾爱军1, 韩文钦2

作者单位:1. 扬州大学水利与能源动力工程学院, 江苏 扬州 225127;
2. 江苏理工学院材料工程学院, 江苏 常州 213001


关键词:声发射;数值模拟;传感器安装策略;波形分析;信号特性


摘要:

为提高声发射检测中信号采集的质量,以实现可靠的损伤识别,采用数值模拟方法研究混凝土构件中开裂损伤与声发射信号之间的定量关系。通过对信号的波形分析得到信号的传播特性,以确保信号清晰、稳定为原则,确定传感器的安装准则,包括避开圣维南区域、避开不合理方位、尽量靠近声源等。同时明确当发生较大程度开裂时,传感器位置的影响可忽略。该研究可为实际声发射检测中传感器的安置和声发射信号的损伤诊断提供理论基础。


Acoustic emission sensor installation strategy based on numerical simulation and waveform analysis

GU Aijun1, HAN Wenqin2

1. School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou 225127, China;
2. School of Material Engineering, Jiangsu University of Technology, Changzhou 213001, China

Abstract: In order to improve the quality of acoustic emission signal acquisition and realize the reliable damage detection, a concrete component was studied numerically to investigate the quantitative relationship between cracking damage and acoustic emission signals. The propagation characteristics of signals were acquired by analyzing waveform of signals. The sensor installation guidelines, including avoiding Saint-Venant's area, eluding unreasonable orientation, and closing to the damage source, were established in accordance with the signal principle of clearness and stableness. Meanwhile it was confirmed that the influence of sensor position could be ignored when cracking was acute. The study provides a theoretical basis for sensors location and damage diagnosis by acoustic emission signals in practical engineering.

Keywords: acoustic emission;numerical simulation;sensor installation strategy;waveform analysis;signal characteristics

2017, 43(11): 117-123,133  收稿日期: 2017-04-09;收到修改稿日期: 2017-05-13

基金项目: 住房和城乡建设部项目(2016-K4-074)

作者简介: 顾爱军(1968-),男,江苏泰兴市人,副教授,博士,主要从事固体力学与无损检测方法研究。

参考文献

[1] ROBINSON S R. Methods of detecting the formation and propagation of microcracks in concrete[C]//Proceeding of the Internet Conference of Structure of Concrete. London:Cement and Concrete Association, 1965.
[2] GREEN A T. Stress wave emission and fracture of prestressed concrete reactor vessel materials[C]//Proc 2nd Interamerican Conf on Materials Technology. ASME,1970.
[3] MCCABE W M, KOERNER R M, LORD A E. Acoustic emission behavior of concrete laboratory specimens[J]. Journal of the American Concrete Institute,1976,73(7):367-371.
[4] 纪洪广. 混凝土材料声发射性能研究与应用[M]. 北京:煤炭工业出版社,2004:34-53.
[5] 杨明纬. 声发射检测[M]. 北京:机械工业出版社,2005:18.
[6] 杨占才,张来斌,刘玉辉,等. 发动机活塞——缸套磨损过程声发射机理研究[J]. 石油矿场机械,2001,30(4):1-3.
[7] KAO D, GRAHAM D, KNIGHT B, et al. A mathematical description of the acoustic coupling of the mass/spring model[J]. Applied Mathematical Modelling,2007,31(12):2684-2695.
[8] SAUSE M G R, HORN S. Simulation of acoustic emission in planar carbon fiber reinforced plastic specimens[J]. Journal of Nondestructive Evaluation,2010,29(2):123-142.
[9] OHTSU M. Source mechanisms of AE[M]//GROSSE C U, OHTSU M. Acoustic Emission Testing. Springer,2008:149-174.
[10] OHTSU M. Source mechanism and waveform analysis of acoustic emission in concrete[J]. Journal of Acoustic Emission,1982(1):103-112.
[11] HORA P, ČERVEN O. Acoustic emission source modeling[J]. Applied and Computational Mechanics,2010(4):25-36.
[12] ONO K, CHO H, MATSUO T. Transfer functions of acoustic emission sensors[J]. Journal of Acoustic Emission,2008(26):72-90.
[13] 赵向军,肖川. 爆炸冲击载荷作用下钢筋混凝土介质裂纹扩展速度的实验研究[J]. 火炸药学报,2013(1):55-58,81.