您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>CdSe量子点的合成、功能化及生物应用

CdSe量子点的合成、功能化及生物应用

2951    2017-12-04

免费

全文售价

作者:邓文清, 代蕊, 江雪, 罗虹, 黄科, 熊小莉

作者单位:四川师范大学化学与材料科学学院, 四川 成都 610066


关键词:量子点;合成;功能化;生物应用


摘要:

量子点是一种新型荧光纳米材料,具有独特而优良的荧光性质,近年来受到研究者的广泛关注。文章综述蛋白质、抗体、肽类以及DNA等对CdSe量子点(CdSe QDs)的表面功能化作用,以及CdSe QDs在生物传感分析中的重要研究进展。具体介绍CdSe量子点的多种合成方法(包括有机相合成、水相合成等),蛋白质、抗体、肽类、DNA利用共价键或静电作用对CdSe量子点修饰方法,以及其在生物医学标记与成像、生物传感、药物载送以及癌症治疗等领域的相关应用,最后针对现有研究的不足进行展望。希望通过对CdSe量子点全方位总结与概述,在一定程度上帮助科研工作者快速、准确了解其相关性质与研究进展。


Synthesis, functionalization and bio-applications of CdSe quantum dots

DENG Wenqing, DAI Rui, JIANG Xue, LUO Hong, HUANG Ke, XIONG Xiaoli

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, China

Abstract: Quantum dots, a new kind of luminescent nanometer material with unique and excellent fluorescent properties, have drawn much attention of researchers in recent years. In this article, the surface functionalization of proteins, antibodies, peptides and DNA on the CdSe quantum dots(CdSe QDs) and its important research progress in biosensor analysis have been reviewed in details. This article specifically introduced the various synthetic methods of CdSe QDs including organic phase synthesis, aqueous synthesis and so on, the modification of proteins, antibodies, peptides and DNA for CdSe QDs by covalent bond or electrostatic interactions, and its application in biological fields, such as biomedical labeling and imaging, biosensor, drug delivery and cancer treatment. Finally, a summary and expectation for the deficiency of related study of CdSe QDs have been made. It will be helpful for researchers to understand their related properties and research progress quickly and accurately to some extent based on all-around summary and overview for CdSe QDs.

Keywords: quantum dots;synthesis;functional;bio-application

2017, 43(11): 51-58  收稿日期: 2017-03-18;收到修改稿日期: 2017-05-10

基金项目: 国家自然科学基金(21605108);四川师范大学实验室及设备管理处基金(ZZYQ2016-1)

作者简介: 邓文清(1992-),女,四川广安市人,硕士研究生,专业方向为光谱分析。

参考文献

[1] MEDINTZ I L, UYEDA H T, GOLDMAN E R, et al. Quantum dot bioconjugates for imaging, labelling and sensing[J]. Nature Materials,2005(4):435-446.
[2] DUBERTRET B, SKOURIDES P, NORRIS D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles[J]. Science,2002,298:1759-1762.
[3] LARSON D R, ZIPFEL W R, WILLIAMS R M, et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo[J]. Science,2003,300:1434-1436.
[4] ZHAO D, LI J, YANG T, et al. Turn off-on fluorescent sensor for platinum drugs-DNA interactions based on quantum dots[J]. Biosenser Bioelectron,2014(52):29-35.
[5] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics[J]. Science,2005,307(5709):538-544.
[6] PENG Z A, PENG X. Mechanisms of the shape evolution of CdSe nanocrystals[J]. Journal of the American Chemical Society,2001,123:1389-1395.
[7] PENG Z A, PENG X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes:nucleation and growth[J]. Journal of the American Chemical Society,2002,124:3343-3353.
[8] MURRAY C B, NORRIS D J, BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE (E=S,Se,Te) semiconductor nanocrystallites[J]. Journal of the American Chemical Society,1993,115:8706-8715.
[9] HINES M A, GUYOT-SIONNEST P. Synthesis and ch-aracterization of strongly luminescing ZnS-capped CdSe nanocrystals[J]. Journal of Physical Chemistry,1996,100:468-471.
[10] LI J J, WANG Y A, GUO W, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction[J]. Journal of the American Chemical Society,2003,125:12567.
[11] HAN H, SHENG Z, LIANG J. A novel method for the preparation of water-soluble and small-size CdSe quantum dots[J]. Materials Letters,2006(60):3782-3785.
[12] CHEN J L, GAO Y C, XU Z B, et al. A novel fluorescent array for mercury(Ⅱ) ion in aqueous solution with functionalized cadmium selenide nanoclusters[J]. Analytica Chimica Acta,2006,577(1):77-84.
[13] WANG Y, TANG Z, CORREA-DUARTE M A, et al. Mechanism of strong luminescence photoactivation of citrate-stabilized water-soluble nanoparticles with CdSe cores[J]. Journal of Physical Chemistry,2004,108(40):15461-15469.
[14] XU J M, RUCHALA P, EBENSTAIN Y, et al. Compact, bright biofunctional quantum dots with improved peptide coating[J]. Journal of Physical Chemistry,2012, 116(36):11370-11378.
[15] DONG A, YE X, CHEN J, et al. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals[J]. Journal of the American Chemical Society,2011,133(4):998-1006.
[16] YOU C C, AGASTI S S, DE M, et al. Modulation of the catalytic behavior of α-chymotrypsin at monolayer-protected nanoparticle surfaces[J]. Journal of the American Chemical Society,2006,128(45):14612-14618.
[17] LU Y, WANG J P, WANG J H, et al. Genetically encodable design of ligand bundling on the surface of nanoparticles[J]. Langmuir,2012,28(39):13788-13792.
[18] BU X H, ZHOU Y M, HE M, et al. Bioinspired, direct synthesis of aqueous CdSe quantum dots for high-sensitive copper(Ⅱ) ion detection[J]. Dalton Transactions,2013,42(43):15411-15420.
[19] TYRAKOWSKI C M, SNEE P T. Ratiometric CdSe/ZnS quantum dot protein sensor[J]. Analytical Chemistry,2014, 86(5):2380-2386.
[20] MATTOUSSI H, MAURO J M, GOLDMAN E R, et al. Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein[J]. Journal of the American Chemical Society,2000,122(49):12142-12150.
[21] XING Y, CHAUDRY Q, SHEN C, et al. Bioconjugated quantum dots for multiplexed and quantitative immunohistochemistry[J]. Nature Protocols,2007,2(5):1152-1165.
[22] HU J, ZHANG Z L, WEN C Y, et al. Sensitive and quantitative detection of C-reaction protein based on imm-unofluorescent nanospheres coupled with lateral flow test strip[J]. Analytical Chemistry,2016,88(12):6577-6584.
[23] WU X, LIU H, LIU J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J]. Nature Biotechnology,2003,21(1):41-46.
[24] FREEMAN R, FINDER T, WILLNER I, et al. Probing protein kinase(CK2) and alkaline phosphatase with CdSe/ZnS quantum dots[J]. Nano Letters,2010,10(6):2192-2196.
[25] AGARWAL R, DOMOWICZ M S, SCHWARTZ N B, et al. Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain[J]. ACS Chemical Neuroscience,2015,6(3):494-504.
[26] SAPSFORD K E, ALGAR W R, BERTI L, et al. Functionalizing nanoparticles with biological molecules:developing chemistries that facilitate nanotechnology[J]. Chemical Reviews,2013,113(3):1904-2074.
[27] PRASUHN D E, DESCHAMPS J R, SUSUMU K, et al. Polyvalent display and packing of peptides and proteins on semiconductor quantum dots:predicted versus experimental results[J]. Small,2010,6(4):555-564.
[28] SINGH S, BOZHILOV K, MULCHANDANI A, et al. Biologically programmed synthesis of core-shell CdSe/ZnS nanocrystals[J]. Chemical Communications,2010,46(9):1473-1475.
[29] BHANG S H, WON N, LEE T J, et al. Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging[J]. ACS Nano,2009,3(6):1389-1398.
[30] SAMANTA A, DENG Z, LIU Y, et al. A perspective on functionalizing colloidal quantum dots with DNA[J]. Nano Research,2013,6(12):853-870.
[31] SU S, FAN J, XUE B, et al. DNA-conjugated quantum dot nanoprobe for high-sensitivity fluorescent detection of DNA and micro-RNA[J]. ACS Applied Materials & Interfaces,2014,6(2):1152-1157.
[32] BAGALKOT V, ZHANG L, LEVY-NISSENBAUM E, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer[J]. Nano Letters,2007,7(10):3065-3070.
[33] LEVY M, CATER S F, ELLINGTON A D. Quantum-dot aptamer beacons for the detection of proteins[J]. Chem Bio Chem,2005,6(12):2163-2166.
[34] MA N, SARGENT E H, KELLEY S O. One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals[J]. Nature Nanotechnology,2009(4):121-125.
[35] SAMANTA A, BANERJEE S, LIU Y. DNA nanotechnology for nanophotonic applications[J]. Nanoscale,2015, 7(6):2210-2220.
[36] ZHANG C L, DING C P, XIANG D S, et al. DNA functionalized fluorescent quantum dots for bioanalytical applications[J]. Chinese Journal of Chemistry,2016,34(3):317-325.
[37] SHARMA J, KE Y, LIN C, et al. DNA tile directed self assembly of quantum dots into two dimensional nanopatterns[J]. Angewandte Chemie,2008,47(28):5157-5159.
[38] WANG X, LOU X H, ZHAO J L, et al. QDs-DNA nanosensor for the detection of hepatitis B virus DNA and the single-base mutants[J]. Biosensors and Bioelectronics,2010,25(8):1934-1940.
[39] BREGER J, DELEHANTY J B, MEDINTZ I L. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots[J]. Wiley Interdisciplinary Reviews:Nanomedicine and Nanobiotechnology,2015,7(2):131-151.
[40] BRUCHEZ M, MORONNE M, GIN P, et al. Semiconductor nanocrystals as fluorescent biological labels[J]. Science,1998,281(5385):2013-2016.
[41] ZAMAN M B, BARAL T N, ZHANG J, et al. Single-domain antibody functionalized CdSe/ZnS quantum dots for cellular imaging of cancer cells[J]. The Journal of Physical Chemistry,2008,113(2):496-499.
[42] MULDER W J M, KOOLE R, BRANDWIJK R J M G E, et al. Quantum dots with a paramagnetic coating as a bimodal molecular imaging probe[J]. Nano Letters,2006,6(1):1-6.
[43] LIU H, XU S, HE Z, et al. Supersandwich cytosensor for selective and ultrasensitive detection of cancer cells using aptamer-DNA concatamer-quantum dots probes[J]. Analytical Chemistry,2013,85(6):3385-3392.
[44] ZHOU J, YANG Y, ZHANG C Y. Toward biocompatible semiconductor quantum dots:from biosynthesis and bioconjugation to biomedical application[J]. American Chemical Society,2015,115(21):11669-11717.
[45] GILL R, FREEMAN R, XU J P, et al. Probing biocatalytic transformations with CdSe/ZnS QDs[J]. Journal of the American Chemical Society,2006,128(48):15376-15377.
[46] DUBERTRET B, SKOURIDES P, NORRIS D J, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles[J]. Science,2002,298(5599):1759-1762.
[47] KIM H, NG C Y W, ALGAR W R. Quantum dot-based multidonor concentric FRET system and its application to biosensing using an excitation ratio[J]. Langmuir,2014,30(19):5676-5685.
[48] WU M, PETRYAYEVA E, ALGAR W R. Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration[J]. Analytical Chemistry,2014,86(22):11181-11188.
[49] HUANG C P, LIU S W, CHEN T M, et al. A new approach for quantitative determination of glucose by using CdSe/ZnS quantum dots[J]. Sensors and Actuators B:Chemical,2008,130(1):338-342.
[50] SUNG H W, LIU Z. Advanced drug delivery systems for therapeutic applications[J]. Advanced Healthcare Materials,2014,8(3):1130-1132.
[51] SAVLA R, TARATULA O, GARBUZENKO O, et al. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer[J]. Jouynal of Controlled Release,2011,153(1):16-22.
[52] BAGALKOT V, ZHANG L, LEVY-NISSENBAUM E, et al. Quantum dot-aptamer conjugates for synchronous cancer Imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer[J]. Nano Letters,2007,7(10):3065-3070.
[53] WENG K C, NOBLE C O, PAPAHADJOPOULOS-STE RNBERG B, et al. Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo[J]. Nano Letters,2008,8(9):2851-2857.