您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于加性分解的轧机液压伺服位置系统控制

基于加性分解的轧机液压伺服位置系统控制

2718    2018-01-31

免费

全文售价

作者:吕书豪, 张磊

作者单位:河北工业大学控制科学与工程学院, 天津 300131


关键词:不确定性;非线性模型;液压伺服位置系统;加性分解;动态逆


摘要:

针对具有参数不确定性、非线性模型和状态不可测的轧机液压伺服位置系统,提出一种基于加性分解(additive-state-decomposition,ASD)动态逆原理的控制算法。该原理首先将轧机液压伺服位置控制问题分解为两个子问题,即线性时不变主系统的跟踪问题和次系统的镇定问题,然后利用动态逆设计出系统的控制器,最后将所设计的控制器应用于某1 450 mm四辊可逆轧机进行仿真,并与传统PID轧机液压伺服位置系统控制进行对比分析。仿真结果表明:该控制器能够抑制外部负载扰动大幅度变化和不确定性因素对系统的影响,保证系统位置跟踪精度且具有良好的鲁棒性和平稳的控制输入,其效果优于PID控制。


Control of hydraulic servo position system of rolling mill based on additive-state-decomposition

LÜ Shuhao, ZHANG Lei

School of Control Science and Engineering, Hebei University of Technology, Tianjin 300131, China

Abstract: Aiming at the hydraulic servo position system of rolling mill featured with parameter uncertainty, nonlinear model and unpredictable state, a control algorithm based on additive-state-decomposition(ASD) dynamic inversion principle was proposed. Firstly, the problem of hydraulic servo position control of rolling mill was decomposed into two subproblems, namely, the tracking problem of linear time-invariant main system and the stabilization of sub-system. Then, the controller of the system was designed based on the dynamic inversion, and finally the designed controller was applied to a 1 450 mm 4-high reversible rolling mill for simulation and analysis was carried out by comparing with the traditional PID rolling mill hydraulic servo position system control. The simulation results show that the controller can suppress the influence of large variation and uncertainty of external load disturbance to the system, and ensure the accuracy of the system location. Besides, it has excellent robustness and smooth control input, which make its effect better than PID control.

Keywords: uncertainty;nonlinear model;hydraulic servo position system;additive-state-decomposition;dynamic inversion

2018, 44(1): 113-117  收稿日期: 2017-05-26;收到修改稿日期: 2017-07-10

基金项目: 河北省自然科学基金(F2015202231)

作者简介: 吕书豪(1991-),男,河南新乡市人,硕士研究生,专业方向为轧机控制技术。

参考文献

[1] 杨瑞峰,郭明明,张鹏,等. PMSM位置伺服系统鲁棒控制技术研究[J]. 中国测试,2017,43(4):89-94.
[2] XU Z, MA D, YAO J, et al. Feedback nonlinear robust control for hydraulic system with disturbance compensation[J]. Journal of Systems & Control Engineering,2016,230(9):978-987.
[3] WON D, KIM W. Disturbance observer based backste-pping for position control of electro-hydraulic systems[J]. International Journal of Control,2015,13(2):488-493.
[4] YANG G, YAO J, LE G, et al. Adaptive robust control of DC motors with time-varying output constraints[C]//Control Conference(CCC),201534th Chinese. Hangzhou:IEEE,2015.
[5] KOVARI A. Effect of leakage in electrohydraulic servo systems based on complex nonlinear mathematical model and experimental results[J]. Acta Polytechnica Hungarica,2015,12(3):2015-2129.
[6] LOVREC D, TIC V, TASNER T. Simulation-aided determination of an efficiency field as a basis for maximum efficiency-controller design[J]. International Journal of Simulation Modelling,2015,14(4):669-682.
[7] YAO J, JIAO Z, MA D, et al. High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties[J]. IEEE/ASME Transactions on Mechatronics,2014,19(2):633-641.
[8] 冯瑞琳,魏建华. 粉末成形液压机自适应鲁棒运动控制[J].农业机械学报,2015,46(8):352-360.
[9] YAO J, JIAO Z, MA D. A practical nonlinear adaptive control of hydraulic servomechanisms with periodic-like disturbances[J]. IEEE/ASME Transactions on Mechatronics,2015,20(6):2752-2760.
[10] KADDISSI C, KENNE J P, SAAD M. Identification and real-time control of an electrohydraulic servo system based on nonlinear backstepping[J]. Mechatronics IEEE/ASME Transactions,2007,12(1):12-22.
[11] YAO J, JIAO Z, MA D. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping[J]. IEEE Transactions on Industrial Electronics,2014,61(11):6285-6293.
[12] KIM W, SHIN D, WON D, et al. Position tracking and flatness controller with disturbance observer in hydraulic servo systems[C]//Sice Annual Conference. Tokyo:IEEE,2011.
[13] 方一鸣,许衍泽,李建雄. 具有输入饱和的液压伺服位置系统自适应动态面控制[J]. 控制理论与应用,2014,31(4):511-518.
[14] WANG C, QUAN L, ZHANG S, et al. Reduced-order model based active disturbance rejection control of hydraulic servo system with singular value perturbation theory[J]. Isa Transactions,2017,67(17):455-465.
[15] GUAN C, PAN S. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters[J]. Control Theory & Applications,2008,16(11):1275-1284.
[16] QUAN Q, CAI K, LIN H. Additive-state-decomposition-based tracking control framework for a class of nonminimum phase systems with measurable nonlinearities and unknown disturbances[J]. International Journal of Robust & Nonlinear Control,2015,25(2):163-178.
[17] 赵微微,张磊,井延伟. 变桨风力发电机组控制器优化设计[J]. 电网技术,2014,38(12):3436-3440.