您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于TraPPE-UA势能模型的超高压乙醇分子动力学模拟

基于TraPPE-UA势能模型的超高压乙醇分子动力学模拟

2870    2018-01-31

免费

全文售价

作者:周晓平, 周伟, 郝江涛

作者单位:郑州大学西亚斯国际学院, 河南 郑州 451150


关键词:乙醇;势能模型;焓;径向分布函数;扩散系数


摘要:

采用分子动力学方法,将TraPPE-UA模型应用于乙醇分子动力学模拟,分析温度298~500 K,压强10~300 MPa下乙醇的热力学性质、结构性质和动力学性质,模拟结果与文献模拟值吻合较好。通过对体系径向分布函数的研究,发现在压强很大的情况下,乙醇体系的结构依然很有规律。研究表明,随温度的升高,乙醇体系焓值增大;随着压强和温度的升高,各径向分布函数的第1峰高度明显下降,体系的长程有序程度下降;乙醇的自扩散系数随温度的升高而增大,而压强对扩散系数的影响与温度正好相反。


Molecular dynamics simulation of ethanol under ultrahigh pressure based on TraPPE-UA potential energy model

ZHOU Xiaoping, ZHOU Wei, HAO Jiangtao

Sias International University, Zhengzhou University, Zhengzhou 451150, China

Abstract: The thermodynamic properties, structure and dynamic properties of ethanol under the temperature of 298-500 K and pressure of 10-300 MPa were investigated by the use of molecular dynamics(MD) simulations and the TraPPE-UA model to describe the ethanol molecule. The simulation results agree well with those from previous molecular simulations. Through the study on the radial distribution function of the system, it is found that the structure of the ethanol system remains regular under the large pressure. From the results, it can be seen that the enthalpy of ethanol system increases as the temperature rises; with the increase of pressure and temperature, the first peak height of each radial distribution function decreases obviously and the long-range orderness of the system decreases as well; and the self-diffusion coefficient of ethanol increases as the temperature rises, while the impact of pressure on diffusion coefficient is just opposite to that of temperature.

Keywords: ethanol;potential energy model;enthalpy;radial distribution function;diffusion coefficient

2018, 44(1): 44-48,100  收稿日期: 2017-06-10;收到修改稿日期: 2017-08-15

基金项目: 河南省科技攻关计划项目(162102210316);河南省基础与前沿技术研究计划项目(162300410269)

作者简介: 周晓平(1984-),女,河南郑州市人,讲师,硕士,主要从事原子与分子团簇方面的研究。

参考文献

[1] RAHMAN A. Correlations in the motion of atoms in liquid argon[J]. Phys Rev,1964(136):405-411.
[2] 曾勇平,朱晓敏,杨正华. 水、甲醇和乙醇液体微结构性质的Car-Parrinello分子动力学模拟[J]. 物理化学学报,2011,27(12):2779-2785.
[3] 曾勇平,时荣,杨正华. Be~(2+)在水、甲醇和乙醇中结构性质的从头算分子动力学模拟[J]. 物理化学学报,2013,2(10):2180-2186.
[4] 罗辉,王睿,范维玉,等. 分子动力学模拟计算超临界CO的溶解度参数[J]. 石油学报(石油加工),2015,31(1):78-83.
[5] 张阳. 分子模拟在纯超临界流体及其二元混合物体系中的应用[D]. 北京:清华大学,2005.
[6] SAIZ L, PADRO J A, GUARDIA E. Structure and dyna mics of liquid ethanol[J]. Phys Chem B,1997(101):78-86.
[7] MARKUS M, HOFFMANN, MARK S C. Are there hydrogen bonds in supercritical methanol and ethanol[J]. Phys Chem B,1998(102):263-271.
[8] JORGENSEN W L. Optimized intermolecular potential functions for liquid alcohols[J]. Phys Chem,1986(90):1276-1284.
[9] CHALARIS M, SAMIOS J. Hydrogen bonding in supe-rcritical methanol A molecular dynamics investigation[J]. Phys Chem B,1999(103):1161-1166.
[10] CHALARIS M, SAMIOS J. Translational and rotational dynamics in supercritical methanol from molecular dynamics simulation[J]. Pure and Applied Chemistry,2004(76):203-213.
[11] CHEN B, POTOFF J J, SIEPMANN J I. Monte carlo calculations for alcohols and their mixtures with alkanes.transferable potentials for phase equilibria.5. United-Atom description of primary secondary and tertiary alcohols[J]. Phys Chem B,2001(105):3093-3104.
[12] AND I Y G, PIOTROVSKAYA E M. Properties of coexisting phases for the ethanol-ethane binary system by computer simulation[J]. Journal of Physical Chemistry B,1999,103(36):7681-7686.
[13] 陈正隆,徐为人,汤立达. 分子模拟的理论与实践[M]. 北京:化学工业出版社,2007:6.
[14] ALLEN M P, TILDESLEY D J. Computer simulation of liquids[M]. Oxford:Clareendon Press,1987:327-341.
[15] DE-LEEUW S W, PERRAM J W, SMITH E R. Simulation of electrostatic systems in periodic boundary conditions I Lattice sums and dielectric constant[J]. Proc R Soc Lond A,1980(373):27-56.
[16] RYCHAERT J P, CICCOTTI G, BERENDSEN H J C. Numercial intergration of the cartesian equations of motion of a system with constraints:molecular dynamics of n-alkanes[J]. J Chem Phys,1977(23):327-341.
[17] GEAR C W. Numerical integration of ordinary differential equations[J]. Mathemetics of Computation,1967,21(98):146-156.
[18] 李勇,刘锦超,芦鹏飞,等. 从常温常压到超临界乙醇的分子动力学模拟[J]. 物理学报,2010,59(7):4880-4887.
[19] DILLON H E, PENONCELLO S G. A fundamental equation for calculation of the thermodynamic properties of ethanol[J]. International Journal of Thermophysics,2004,25(2):321-335.
[20] PETRAVIC J, DELHOMMELLE J. Influence of temperature, pressure and internal degrees of freedom on hydrogen bonding and diffusion in liquid ethanol[J]. Chemical Physics,2003,286(2/3):303-314.
[21] DELLIS D, MICHALIS C A, SAMIOS J. Pressure and temperature dependence of the hydrogen bonding in supercritical ethanol:A computer simulation study[J]. Journal of Physical Chemistry B,2005,109(39):18575-18590.
[22] 周晓平,杨向东,刘锦超. 超高压水的分子动力学模拟[J]. 高压物理学报,2009,23(4):1-5.
[23] KARGER N, VARDAG T. Temperature dependence of self iffusion in compressed monohydric alcohols[J]. Journal of Chemical Physics,1990,93(93):3437-3444.