您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于最大相关谱峭度解卷积的滚动轴承故障周期冲击特征提取

基于最大相关谱峭度解卷积的滚动轴承故障周期冲击特征提取

2842    2018-06-02

免费

全文售价

作者:许自立1, 许贡2, 李进1, 乔印虎1

作者单位:1. 安徽科技学院机械工程学院, 安徽 凤阳 233100;
2. 湖南天雁机械有限责任公司, 湖南 衡阳 421000


关键词:相关谱峭度;解卷积;轴承故障诊断;集总经验模式分解


摘要:

滚动轴承广泛应用于重型旋转机械支撑和传送负载,经常工作在低速、重载等恶劣工况下,特别容易损坏,从而导致机械设备停运停产的事故,因此有必要提出一种基于最大相关谱峭度解卷积的滚动轴承故障周期冲击特征提取方法。该方法利用轴承运行过程中局部故障激发起的周期性冲击特征,通过最大化相关谱峭度选择最佳有限冲击响应滤波器参数;通过迭代卷积运算,消除振动信号中的噪声,提取出滚动轴承故障激发起的周期性冲击特征;依据冲击特征的周期判断轴承故障所在位置,从而实现轴承故障诊断。通过仿真和滚动轴承实验数据验证提出方法的可行性,并与广泛应用的集总经验模式分解方法提取结果进行对比,结果表明该文提出的方法在轴承故障诊断中展现出更好的优势。


Fault period impact characteristic extraction of rolling bearings based on maximum correlated kurtosis deconvolution

XU Zili1, XU Gong2, LI Jin1, QIAO Yinhu1

1. College of Mechanical Engineering, Anhui Science and Technology University, Fengyang 233100, China;
2. Hu'nan Tyen Machinery Co., Ltd., Hengyang 421000, China

Abstract: Rolling bearings, widely used to support heavy rotating machinery and transfer load, generally working in low speed and heavy load conditions, thereby easily resulting in damages and mechanical equipment shutdown. Therefore, it is necessary to propose a method for fault period impact characteristic extraction of rolling bearings based on maximum correlated kurtosis deconvolution. The proposed method takes advantage of the period impact characteristics excited by partial failure during bearing operation as well as maximized correlated kurtosis to select the optimum parameters of finite response filter. Besides, based on iterative convolution operation, noise in vibration signals can be eliminated and period impact characteristics excited by failure of rolling bearing fault can be further extracted, thereby bearing faults location can be diagnosed according to the period of impact characteristics and bearing failure diagnosis can be realized. Simulation and test data of rolling bearing indicates the feasibility of proposed method and it is better than ensemble empirical mode decomposition(EEMD) in bearing failure diagnosis by comparing with the results extracted of ensemble empirical mode decomposition method.

Keywords: correlated kurtosis;deconvolution;bearings fault diagnosis;ensemble empirical mode decomposition

2018, 44(5): 31-36  收稿日期: 2017-11-10;收到修改稿日期: 2018-01-07

基金项目: 安徽省科技厅项目(1704a0902058);安徽高校自然科学重大项目(KJ2017ZD44);安徽科技学院校级引进人才项目(JXYJ201604)

作者简介: 许自立(1989-),男,安徽淮北市人,助教,硕士,主要从事汽车材料与汽车检测维修方面的研究。

参考文献

[1] AVENDAÑO-VALENCIA L D, FASSOIS S D. Damage/fault diagnosis in an operating wind turbine under uncertainty via a vibration response Gaussian mixture random coefficient model based framework[J]. Mechanical Systems and Signal Processing,2017,91:326-353.
[2] KLAMECKI B E. Use of stochastic resonance for enhancement of low-level vibration signal components[J]. Mechanical Systems and Signal Processing,2005,19(2):223-237.
[3] 陈骏杰,师蔚,胡定玉. 基于IMF聚合与SVD的城轨车辆牵引电机轴承故障诊断[J]. 测控技术,2017,36(1):14-17.
[4] MIAO Y, ZHAO M, LIN J, et al. Application of an improved maximum correlated kurtosis deconvolution method for fault diagnosis of rolling element bearings[J]. Mechanical Systems and Signal Processing,2017,92:173-195.
[5] 王建国,陈帅,张超. 噪声参数最优ELMD与LS-SVM在轴承故障诊断中的应用与研究[J]. 振动与冲击,2017,36(5):72-78.
[6] 钱林,康敏,傅秀清,等. 基于的自适应形态学在轴承故障诊断中的应用[J]. 振动与冲击,2017,36(3):227-233.
[7] BOZCHALOOI I S, LIANG M. A smoothness index-guided approach to wavelet parameter selection in signal de-noising and fault detection[J]. Journal of Sound and Vibration,2007,308(1/2):246-267.
[8] YANG M, MAKIS V. ARX model-based gearbox fault detection and localization under varying load conditions[J]. Journal of Sound and Vibration,2010,329(24):5209-5221.
[9] WANG X, MAKIS V. Autoregressive model-based gear shaft fault diagnosis using the Kolmogorov-Smirnov test[J]. Journal of Sound and Vibration,2009,327(3/5):413-423.
[10] ENDO H, RANDALL R B. Enhancement of autoregressive model based gear tooth fault detection technique by the use of minimum entropy deconvolution filter[J]. Mechanical Systems and Signal Processing,2007,21(2):906-919.
[11] COMBET F, GELMAN L. Optimal filtering of gear signals for early damage detection based on the spectral kurtosis[J]. Mechanical Systems and Signal Processing,2009,23(3):652-668.
[12] EL BADAOUI M, GUILLET F, DANIERE J. New applications of the real cepstrum to gear signals, including definition of a robust fault indicator[J]. Mechanical Systems and Signal Processing,2004,18(5):1031-1046.
[13] 胥永刚,孟志鹏,陆明,等. 双树复小波和奇异差分谱在滚动轴承故障诊断中的应用[J]. 振动工程学报,2013,26(6):965-973.
[14] 张建宇,孟浩,胥永刚. 基于信源估计和频域反卷积的滚动轴承故障特征分离与辨识[J]. 中国机械工程,2017,28(1):45-51.
[15] WIGGINS R A. Minimum entropy deconvolution[J]. Geoexploration,1978,16(1/2):21-35.
[16] SAWALHI N, RANDALL R B, ENDO H. The enhancement of fault detection and diagnosis in rolling element bearings using minimum entropy deconvolution combined with spectral kurtosis[J]. Mechanical Systems and Signal Processing,2007,21(6):2616-2633.
[17] MCDONALD G L, ZHAO Q, ZUO M J. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection[J]. Mechanical Systems and Signal Processing,2012,33(1):237-255.
[18] ANTONI J. The infogram:Entropic evidence of the signature of repetitive transients[J]. Mechanical Systems and Signal Processing,2016,74:73-94.
[19] QIAO Z, PAN Z. SVD principle analysis and fault diag nosis for bearings based on the correlation coefficient[J]. Measurement Science and Technology,2015,26(8):085014.
[20] QIU H, LEE J, LIN J, et al. Wavelet filter-based weak signature detection method and its application on rolling element bearing prognostics[J]. Journal of Sound and Vibration,2006,289(4):1066-1090.