您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>航空发动机零组件流量测试系统误差控制研究

航空发动机零组件流量测试系统误差控制研究

2686    2018-06-02

免费

全文售价

作者:张万虎, 张亚莉

作者单位:中国航发航空科技股份有限公司工程技术研究中心, 四川 成都 610503


关键词:航空器制造工艺;空气流量测试;系统误差控制;音速喷嘴;流量测试夹具


摘要:

为提高航空发动机零组件空气流量测试结果的准确性、控制和降低流量测试系统误差,以某型发动机高压涡轮前内喷嘴支承组件的测试为例,对空气流量测试相关的气源、设备、夹具等系统性因素进行逐一分析和研究。研究结果表明:通过对气源、设备、夹具进行综合控制,可以有效地控制和降低流量测试误差。其中,应对气源进行过滤、干燥,使测试气体的杂质颗粒直径1 m,残留油份含量110-6,露点-2℃。设备测量误差可依据推导出的测量误差计算公式通过正确分配和选择各测量器件的精度进行控制。测试夹具应考虑设计集气腔和缓冲板,并使用恰当的密封方法。


Study on systematic error control of airflow test for aero-engine parts and assemblies

ZHANG Wanhu, ZHANG Yali

Engineering Technology Research Center, AECC Aero Science and Technology Co., Ltd., Chengdu 610503, China

Abstract: In order to improve the accuracy of airflow test results for aero-engine parts and assemblies, and to control and reduce the airflow test systematic error, the airflow test of a high press turbine front inner support nozzle of an aero-engine was taken for example to analyze and study the related systematic factors such as air supply, equipment and fixture. The final results show that the error of airflow test results could be effectively controlled and reduced through comprehensively controlling the air supply, the equipment, and the fixture. Air supply should be filtered and dried to make the particulate matter ≤ 1 μm, the content of residual oil ≤ 1×10-6, the dew point ≤ -2℃. Equipment measuring error could be controlled through correctly assigning and selecting the accuracy rating of the measuring devices based on the derived measuring error calculating formula. Designing of a plenum and a baffle should be considered for test fixture, and proper sealing methods should be used.

Keywords: aircraft manufacturing process;airflow test;systematic error control;sonic nozzle;airflow test fixture

2018, 44(5): 137-141  收稿日期: 2017-10-17;收到修改稿日期: 2017-12-18

基金项目: 

作者简介: 张万虎(1986-),男,陕西宝鸡市人,工程师,硕士,主要从事航空发动机零组件空气流量测试方面的研究工作。

参考文献

[1] SPENCE R B, LAU S C. Heat transfer and friction in segmental turbine blade cooling channels[J]. Journal of Thermophysics and Heat Transfer,1997,11(3):486-488.
[2] 陈冰. 航空发动机叶片内部通道冷却的数值模拟[D]. 大连:大连理工大学,2002.
[3] 郭杰. 发动机高空试验空气流量测量与修正方法研究[D]. 成都:电子科技大学,2011.
[4] LIMA J M, YOONB B H, OH Y K, et al. The humidity effect on air flow rates in a critical flow venturi nozzle[J]. Flow Measurement and Instrumentation,2011, 22(5):402-405.
[5] WRIGHT P H. The application of sonic(critical flow) nozzles in the gas industry[J]. Flow Measurement and Instrumentation,1993,2(4):67-71.
[6] BIGNELL N. Using small sonic nozzles as secondary flow standards[J]. Flow Measurement and Instrumentation,2000, 11(4):329-337.
[7] CHAHINE K, BALLICO M. Evaluation of the effect of relative humidity of air on the coefficients of critical flow venturi nozzles[C]//16th International Flow Measurement Conference,2013.
[8] 李普良,刘宏博,黄希望,等. 某流量函数试验器临界文氏管流量测量与误差分析[J]. 测控技术,2015(34):636-638.
[9] Measurement of gas flow by means of critical flow venture nozzles:ISO 9300[S]. 2005.
[10] DING H B, WANG C. Construction of gas flow standard facilities by means of positive pressure sonic nozzle[C]//Second International Conference on Mechanic Automation and Control Engineering,2011.
[11] ASCHENBRENNER A. The influence of humidity on the flow rate of air through critical flow nozzles[C]//3rd International conference on flow measurement,1983.
[12] JOHNSON R C. Real gas effects in critical-flow-through nozzles and tabulated thermodynamic properties[J]. NASA Technical Note,1965,34(5):123-130.
[13] 李周复. 航空气动力技术[M].北京:航空工业出版社,2013:38-39.