您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于Mo/CeO2纳米模拟酶的活性抑制检测银离子

基于Mo/CeO2纳米模拟酶的活性抑制检测银离子

2991    2018-08-27

免费

全文售价

作者:焦雪, 刘文昊, 马明建, 钱昊, 许晓玲, 王琼丹, 吴庆

作者单位:遵义医学院药学院, 贵州 遵义 563000


关键词:Mo/CeO2;纳米粒子;模拟酶;比色检测;Ag+


摘要:

通过微波辅助的合成方法制备了Mo掺杂的CeO2纳米粒子(Mo/CeO2 NPs),Mo/CeO2 NPs能够有效地催化H2O2氧化3,3,5,5-四甲基联苯胺(TMB)产生显色反应,表现出良好的过氧化物模拟酶催化活性。而银离子(Ag+)对Mo/CeO2 NPs的催化活性具有明显的抑制作用,一定范围内随着Ag+浓度的增加,抑制作用逐渐增强,基于此构建一种快速准确测定Ag+的比色传感方法。在最优条件下,该方法的检测范围为1.010-7~2.010-5 mol/L,检出限为0.910-7 mol/L。此方法仪器简单,操作方便,避免复杂的有机合成步骤,检测结果准确,可应用于实际样品检测。


Determination of Ag+ based on activity inhibition of Mo/CeO2 NPs mimic enzyme

JIAO Xue, LIU Wenhao, MA Mingjian, QIAN Hao, XU Xiaoling, WANG Qiongdan, WU Qing

College of Pharmacy, Zunyi Medical University, Zunyi 563000, China

Abstract: In this paper, Mo/CeO2 NPs were prepared by a facile microwave-assisted method, which could effectively catalyze H2O2 to oxidize the typical substrate of 3,3',5,5'-tetramethyl-benzidine (TMB) and engenders color reaction, which showed the good catalytic activity of peroxidase mimic enzyme. The Ag+ could effectively inhibit the catalytic activity of the Mo/CeO2 NPs, and the inhibition gradually increased with the increase of Ag+ concentration in a certain range. Therefore, a colorimetric detection of Ag+ was performed in a linear range of 1.0×10-7 -2.0×10-5 mol/L with a detection limit of 0. 9×10-7 mol/L. This method is easy to operate by using simple instruments and can aviod complex organic synthesis procedures. The test result is accurate, which can apply in the actual sample detection.

Keywords: Mo/CeO2;nanoparticles;enzyme mimics;colorimetric detection;Ag+

2018, 44(8): 52-56  收稿日期: 2018-03-06;收到修改稿日期: 2018-04-12

基金项目: 贵州省联合基金(黔科合LH字[2014]7558号)

作者简介: 焦雪(1988-),女,贵州遵义市人,实验师,硕士,研究方向为纳米分析化学

参考文献

[1] KOKURA S, HANDA O, TAKAGI T, et al. Silver nanoparticles as a safe preservative for use in cosmetics[J]. Nanomedicine, 2010, 6(4):570-574.
[2] MCGILLICUDDY E, MURRAY I, KAVANAGH S, et al. Silver nanoparticles in the environment:Sources, detection and ecotoxicology[J]. Science of the Total Environment, 2017(575):231-246.
[3] SREEKUMARI KR. Silver containing stainless steel as a new outlook to abate bacterial adhesion and microbiologically influenced corrosion[J]. Transactions of the Iron & Steel Institute of Japan, 2007, 43(11):1799-1806.
[4] ZHANG Y, CHEN W, DONG X, et al. Simultaneous detection of trace toxic metal ions, Pb2+and Ag+, in water and food using a novel single-labeled fluorescent oligonucleotide probe[J]. Sensors and Actuators B:Chemical, 2018(261):58-65.
[5] XU G, WANG G, HE X, et al. An ultrasensitive electrochemical method for detection of Ag(+) based on cyclic amplification of exonuclease Ⅲ activity on cytosine-Ag(+)-cytosine[J]. Analyst, 2013, 138(22):6900-6906.
[6] MUSIL S, KRATZER J, VOBECKÝ M, et al. Silver chemical vapor generation for atomic absorption spectrometry:minimization of transport losses, interferences and application to water analysis[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(10):1618-1626.
[7] WU Y, JIANG T, WU Z, et al. Internal standard-based SERS aptasensor for ultrasensitive quantitative detection of Ag(+) ion[J]. Talanta, 2018(185):30-36.
[8] MITRANO DM, LESHER EK, BEDNAR A, et al. Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry[J]. Environmental Toxicology & Chemistry, 2011, 31(1):115-121.
[9] GUO L, MAO L, HUANG K, et al. Pt-Se nanostructures with oxidase-like activity and their application in a selective colorimetric assay for mercury(Ⅱ)[J]. Journal of Materials Science, 2017, 52(18):10738-10750.
[10] SINGH S, MITRA K, SHUKLA A, et al. Brominated Graphene as Mimetic Peroxidase for Sulfide Ion Recognition [J]. Anal Chem, 2017, 89(1):783-791.
[11] HASSANZADEH J, KHATAEE A, ESKANDARI H. Encapsulated cholesterol oxidase in metal-organic framework and biomimetic Ag nanocluster decorated MoS 2 nanosheets for sensitive detection of cholesterol[J]. Sensors and Actuators B:Chemical, 2018, 259:402-410.
[12] YANG Q, LI F, HUANG Y, et al. Highly sensitive and selective detection of silver(i) in aqueous solution with silver(i)-specific DNA and Sybr green I[J]. Analyst, 2013, 138(7):2057-2060.
[13] LI X, WU Z, ZHOU X, et al. Colorimetric response of peptide modified gold nanoparticles:an original assay for ultrasensitive silver detection[J]. Biosensors & Bioelectronics, 2017(92):496-501.
[14] GAO L, ZHUANG J, NIE L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nature Nanote chnology, 2007, 2(9):577-583.
[15] TAO Y, LIN Y, HUANG Z, et al. Incorporating graphene oxide and gold nanoclusters:a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection[J]. Advanced Materials, 2013, 25(18):2594-2599.