您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>面向环境适应性的无人机飞行姿态模拟器设计与仿真

面向环境适应性的无人机飞行姿态模拟器设计与仿真

2729    2018-08-27

免费

全文售价

作者:杨剑锋1,2,3, 黄创绵1,2,4, 李小兵1,3,4, 潘广泽1,2,3, 闫攀峰5, 袁婷5

作者单位:1. 工业和信息化部电子第五研究所, 广东 广州 510610;
2. 广东省无人机可靠性与安全性工程技术研究中心, 广东 广州 510610;
3. 广东省工业机器人可靠性工程实验室, 广东 广州 510610;
4. 广东省电子信息产品可靠性技术重点实验室, 广东 广州 510610;
5. 航空工业第一飞机设计研究院, 陕西 西安 710000


关键词:无人机;联合仿真;姿态模拟;测试


摘要:

针对无人机开展不同飞行姿态下的环境适应性试验,设计一种可以模拟旋翼无人机不同姿态的飞行模拟器,并采用联合仿真的方法对该模拟器进行虚拟仿真分析。首先,介绍飞行姿态模拟的结构设计及使用场景。然后,阐述联合仿真的技术方案,并分析伺服控制系统的基本原理。最后,搭建飞行模拟器的机-电联合仿真模型,建立基于速度闭环的控制系统,进行阶跃信号和正弦信号跟踪仿真。仿真结果显示:伺服系统的最大超调量为8.25%,最大调整时间为0.75 s。分析结果表明:设计的无人飞行姿态模拟可以有效模拟旋翼类无人机的飞行姿态,提出的联合仿真方法有效,具有实际的工程应用价值。


Design and simulation of UAV flight attitude simulator according to environmental compatibility

YANG Jianfeng1,2,3, HUANG Chuangmian1,2,4, LI Xiaobing1,3,4, PAN Guangze1,2,3, YAN Panfeng5, YUAN Ting5

1. The Fifth Electronic Institute of MIIT, Guangzhou 510610, China;
2. Guangdong Provincial Engineering Technology Research Center of UAV Reliability and Safety, Guangzhou 510610, China;
3. Guangdong Industrial Robot Reliability Engineering Laboratory, Guangzhou 510610, China;
4. Guangdong Provincial Key Laboratory of Electronic Information Products Reliability Technology, Guangzhou 510610, China;
5. AVIC the first aircraft institute, Xi'an 710000, China

Abstract: A flight simulator which can simulate the different flight attitudes of unmanned aerial vehicle (UAV) was designed and a virtual simulation analysis on the simulator was performed through joint simulation to implement the environment adaptability test for UAV. The paper first introduces the structure design and usage scenarios of the flight attitude simulator, then explains the technical scheme of joint simulation, and makes an analysis of the basic principle of servo control system. Finally, the machine-electric joint simulationmodel of the flight simulator is set up and control system based on close-loop speed is established to carry out the tracking simulation of step signal and sinusoidal signal. The simulation results show that the maximum overshoot of the servo control system is 8.25% and the maximum adjustment time is 0.75 s, which indicates the flight simulator designed can simulate the flight attitude of UAV and the multi-disciplinary simulation proposed is effective, with practical engineering value

Keywords: UAV;co-simulation;attitude simulation;test

2018, 44(8): 125-131  收稿日期: 2018-03-15;收到修改稿日期: 2018-04-11

基金项目: 工信部民机专项(MJZ-2016-F-24);广东省省级科技计划项目(2016A040403036);广东省重大科技专项(2017B010116004);广州市工业和信息化发展专项资金(MTV1770140)

作者简介: 杨剑锋(1989-),男,湖北天门市人,工程师,博士,研究方向为无人机可靠性测试与安全性评估

参考文献

[1] ZHANG F, FU M C, LIU L, et al. Platform design and test analysis for UAV flight inspection and testing[C]//4th International Conference on Applied Robotics for the Power Industry. CARPI, 2016.
[2] 刘炜, 冯丙文, 翁健. 小型无人机安全研究综述[J]. 网络与信息安全学报, 2016, 2(3):0037-1-7.
[3] SONG S H, KIM D H, CHANG C H. Experimental reliability analysis of multi-UAV simulation with TMO-based distributed architecture and global time synchronization[C]//13th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing Workshops. IEEE, 2010.
[4] 郑天茹, 王海滨, 张晶晶,等. 适用于高海拔地区输电线路巡检的无人机测试[J]. 山东电力技术, 2013(4):22-25.
[5] RUSSELL C, JUNG J, WILLINK G, et al. Wind tunnel and hover performance test results for multicopter UAS vehicles[C]//72nd Annual Forum. AHS, 2016.
[6] 丁承君, 王勇杰. 旋翼无人机动力系统选型及测试方案[J]. 科技与创新, 2017(7):33-38.
[7] DENG D W, LI B A. Flight safety control and ground test on UAV[C]//Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. IEEE, 2014.
[8] 郑志国, 张金福. 战术电台自然环境高温试验方法研究[J]. 电子产品可靠性与环境试验, 2015, 33(3):11-16.
[9] 江君, 赫雷, 周克栋. 基于ADAMS与Simulink的电动式自动机联合仿真[J]. 兵工自动化, 2012, 31(7):45-48.
[10] 黎海青, 郭百巍, 徐红. 基于ADAMS与SIMULINK的舵机虚拟样机建模和仿真[J]. 系统仿真学报, 2009, 21(21):6886-6888.
[11] 陆艺, 薛剑, 徐博文,等. 客车整车制动稳定性硬件在环仿真研究[J]. 中国测试, 2016, 42(3):128-134.
[12] 刘志凯, 杨瑞峰, 郭晨霞,等. 基于ADAMS的扭矩合成装置动力学仿真分析[J]. 中国测试, 2015, 41(12):87-90.