您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>微流控技术在法医DNA快速检验方面的应用

微流控技术在法医DNA快速检验方面的应用

2682    2016-02-03

免费

全文售价

作者:韩俊萍1, 孙敬2,3, 欧元2,3, 叶健2,3, 刘耀1,2,3, 李彩霞2,3

作者单位:1. 中国人民公安大学, 北京 100038;
2. 公安部物证鉴定中心北京市现场物证检验工程技术研究中心, 北京 100038;
3. 公安部物证鉴定中心法医遗传学公安部重点实验室, 北京 100038


关键词:微流控芯片技术;DNA快速检验;综述;全集成


摘要:

微流控芯片技术因其微型化、自动化、高通量、集成化、快速等优势使得实验室研究产生革命性的变化,并在生物化学、医学等诸多领域得到广泛应用,但目前还没有基于微流控芯片技术的国产全集成自动化DNA分析仪。该文总结微流控技术在DNA提取、PCR扩增、电泳分离等DNA检验流程方面的研究现状与进展,尤其是在法医DNA快速检验方面的研究进展,同时介绍国内外全集成式DNA分析的研究状况。全集成与功能化是目前微流控技术研究的主流方向。未来,以微流控芯片为主导的全自动、便携式、集成化的DNA分析系统,将使得法医DNA检验从实验室走进案件现场甚至日常生活,实现真正的快速即时检验。


Application of microfluidics technology in DNA rapid testing of forensic science

HAN Junping1, SUN Jing2,3, OU Yuan2,3, YE Jian2,3, LIU Yao1,2,3, LI Caixia2,3

1. People's Public Security University of China, Beijing 100038, China;
2. Beijing Engineering Research Center of Crime Scene Evidence Examination, Institute of Forensic Science, Beijing 100038, China;
3. Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China

Abstract: Miniature, automatic and integrated with high throughput and rapid analysis, the microfluidic chip technology has brought revolutionary changes in laboratory experimentation in recent years and has been widely used in many research-based field, such as biochemistry and medicine. However, microfluidics is not yet introduced into home-made totally-integrated automation DNA analyzers. This paper has summarized the applications of microfluidics in DNA rapid testing, including DNA extraction, PCR amplification and electrophoresis separation, especially the advance of forensic DNA rapid detection. In addition, it also discussed the research state of the totally-integrated DNA analysis at home and abroad. Currently, full integration and versatility are the mainstream direction of microfluidic technology research. With the help of this system, rapid and real-time forensic DNA testing will not only be conducted in laboratories, but also at crime scenes and even in everyday lives.

Keywords: microfluidic chip technology;DNA rapid testing;summary;full integration

2016, 42(1): 53-60  收稿日期: 2015-07-02;收到修改稿日期: 2015-08-10

基金项目: 中央级公益性科研院所基本科研业务专项(2015JB005);公安部技术研究计划资助项目(2014JSYJA011)

作者简介: 韩俊萍(1986-),女,山西太原市人,博士研究生,主要从事法医遗传学相关方面研究。

参考文献

[1] BUTLER J M. Forensic STR typing:biology, technology and genetics of STR markers[M]. 2nd ed. New York:Elsevier,2005:207-211.
[2] 方肇伦,方群. 微流控芯片发展与展望[J]. 现代科学仪器,2001(4):3-6.
[3] 何林. 面向微流控芯片的微量血清分离方法的研究[D]. 长春:中国科学院长春光学精密机械与物理研究所,2006.
[4] TIAN H, HUHMER A F, LANDERS J P. Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format[J]. Anal Biochem,2000,283(2):175-191.
[5] DUARTE G R M, PRICE C W, LITTLEWOOD J L, et al. Characterization of dynamic solid phase DNA extraction from blood with magnetically controlled silica beads[J]. Analyst,2010,135(3):531-537.
[6] REEDY C R, PRICE C W, SNOEGPWSLO J, et al. Solid phase extraction of DNA from biological samples in a post-based, high surface area poly(methyl methacrylate)(PMMA) microdevice[J]. Lab Chip,2011,11(9):1603-1611.
[7] 刘惯超,肖宏,李荔,等. 溶胶-凝胶法制作塑料基WDNA提取芯片以及应用于从人血中提取DNA[J]. 材料科学与工程学报,2007,25(1):122-124.
[8] 王聿佶,陈翔,曹慧敏,等. 一种新型微流体DNA提取芯片的研究[J]. 微纳电子技术,2007(9):853-856.
[9] CAO W, EASLEY C J, FERRANCE J P, et al. Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system[J]. Anal Chem,2006,78(20):7222-7228.
[10] WITEK M A, LLOPIS S D, WHEATLEY A, et al. Purification and preconcentration of genomic DNA from whole cell lysates using photoactivated polycarbonate(PPC) microfluidic chips[J]. Nucleic Acids Res,2006,34(10):74.
[11] KIM J, GALE B K. Quantitative and qualitative analysis of a microfluidic DNA extraction system using a nanoporousAlO(x) membrane[J]. Lab Chip,2008,8(9):1516-1523.
[12] KOPP M U, MELLO A J, MANZ A. Chemical amplification:continuous flow PCR on chip[J]. Science,1998,280(5366):1046-1048.
[13] FUKUBA T, YAMAMOTO T, NAGANUMA T, et al. Microafbrieated flow-through device for DNA amplification-towards in situ gene analysis[J]. ChemEng J,2004,101(1-3):151-156.
[14] BU M Q, MELVIN T, ENSELL G, et al. Design and theoretical evaluation of a novel microfluidic device to be used for PCR[J]. J Micromech Microen,2003,13(4):125-130.
[15] MATSUBARA Y, KERMAN K, KOBAYASHI M, et al. Microchamber array based DNA quantification and specific sequence detection from a single copy via PCR in nanoliter volumes[J]. Biosens Bioelectron,2005,20(8):1482-1490.
[16] 吴志勇,田晓溪,渠柏艳,等. 透明导电玻璃(ITO)基材自加热传感静态芯片聚合酶链反应(PCR)[J]. 高等学校化学学报,2007,28(12):2259-2263.
[17] TERAZONO H, MATSUURA K, KIM H, et al. Homogenous measurement during a circulation-water-based ultrahigh-speed polymerase chain reaction and melting curve analysis device[J]. Jpn J Appl Phys,2014,53(6):6-8.
[18] BELGRADER P, SMITH J M, WEEDU V W, et al. Rapid PCR for identity testing using a battery-powered miniature thermal cycler[J]. JForensic Sci,1998,43(2):315-319.
[19] ESTES M D, YANG J, DUANE B, et al. Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis[J]. Analyst,2012,137(23):5510-5519.
[20] HAGAN K A, REEDY C R, BIENVENUE J M, et al. A valveless microfluidic device for integrated solid phase extraction and polymerase chain reaction for short tandem repeat(STR) analysis[J]. Analyst,2011,136(9):1928-1937.
[21] LAGALLY E T, MEDINTZ I, MATHIES R A. Single-molecule DNA amplification and analysis in an integrated microfluidic device[J]. Anal Chem,2001,73(3):565-570.
[22] LOUNSBURY J A, KARLSSON A, MIRANIAN D C, et al. From sample to PCR productin under 45 min:A polymeric integrated microdevice for clinical and forensic DNA analysis[J].Lab Chip,2013,13(7):1384-1393.
[23] LOUNSBURY J A, LANDERS J P. Ultrafast amplification of DNA on plastic microdevices for forensic short tandem repeat analysis[J]. J Forensic Sci,2013,58(4):866-874.
[24] SHI Y, SIMPSON P C, SCHERER J R, et al. Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis[J]. Anal Chem,1999,71(23)::5354-5361.
[25] EMERICH C A, TIAN H J, MEDINTZ I L, et al. Microfabricated 384-lane capillary array electrophoresis bioanalyzer for ultrahigh-throughput genetic analysis[J]. Anal Chem,2002,74(19):5076-5083.
[26] GOEDECKE N, MCKENNA B, EL-DIFRAWY S, et al. A high-performance multilane microdevice system designed for the DNA forensics laboratory[J]. Electrophoresis,2004,25(10-11):1678-1686.
[27] MITNIK L, CAREY L, BURGER R, et al. Highspeed analysis of multiplexed short tandem repeats with an electrophoretic[J]. Electrophoresis,2002,23(5):719-726.
[28] YEUNG S H, GREENSPOON S A, MCGUCKIAN A, et al. Rapid and high-throughput forensic short tandem repeat typing using a 96-lane microfabricated capillary array electrophoresis microdevice[J]. J Forensic Sci,2006,51(4):740-747.
[29] GREENSPOON S A, YEUNG S H, JOHNSON K, et al. A forensic laboratory tests the Berkeley microfabricated capillary array electrophoresis device[J]. J Forensic Sci,2008,53(4):828-837.
[30] YEUNG S H, MEDINTZ I L, GREENSPOON S A, et al. Rapid determination of monozygous twinning with a microfabricated capillary array electrophoresis genetic-analysis device[J]. Clin Chem,2008,54(6):1080-1084.
[31] 杨茜,熊强,姜成涛,等. 基于可弃型低成本PMMA电泳芯片的微型DNA分析系统[J]. 生物化学与生物物理进展,2009,36(4):506-511.
[32] SHI Y, ANDERSON R C. High-resolution single-stranded DNA analysis on 4.5cm plastic electrophoretic microchannels[J]. Electrophoresis,2003,24(19-20):3371-3377.
[33] YEUNG S H, LIU P, DEL BUERNO N, et al. Integrated sample cleanup-capillary electrophoresis microchip for high-performance short tandem repeat genetic analysis[J]. Anal Chem,2009,81(1):210-217.
[34] SCHERER J R, LIU P, MATHIES R A. Design and operation of a portable scanner for high performance microchip capillary array electrophoresis[J]. Rev Sci Instrum,2010,81(11):105-113.
[35] NJOROGE S K, CHEN H W, WITEK M A, et al. Integrated microfluidic systems for DNA analysis[J]. Top Curr Chem,2011(304):203-260.
[36] DELPHINE L R, ROOT B E, REEDY C R, et al. DNA analysis using an integrated microchip for multiplex PCR amplification and electrophoresis for reference samples[J]. Anal Chem,2014,86(16):8192-8199.
[37] BIENVENUE J M, LEGENDRE L A, FERRANCE J P, et al. An integrated microfluidic device for DNA purification and PCR amplification of STR fragments[J]. Forensic SciInt Genet,2010,4(3):178-186.
[38] 季旭,刘理天. 一种集成PCR反应室与CE的生物芯片的研究[J]. 仪器仪表学报,2003,24(4):201-202.
[39] LIU P, SEO T S, BEYOR N, et al. Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing[J]. Anal Chem,2007,79(5):1881-1889.
[40] LIU P, YEUNG S H, CRENSHAW K A, et al. Real-time forensic DNA analysis at a crime scene using a portable microchip analyzer[J]. Forensic SciInt Genet,2008,2(4):301-309.
[41] EASLEY C J, KARLINSEY J M, BIENVENUE J M, et al. A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability[J]. Proc Natl Acad Sci USA,2006,103(51):19272-19277.
[42] HOPWOOD A J, HURTH C, YANG J, et al. Integrated microfluidic system for rapid forensic DNA analysis:sample collection to DNA profile[J]. Anal Chem,2010,82(16):6991-6999.
[43] LIU P, LI X, GREENSPOON S A, et al. Integrated DNA purification, PCR, sample cleanup, and capillary electrophoresis microchip for forensic human identification[J]. Lab Chip,2011,11(6):1041-1048.
[44] DELPHINE L R, ROOT B E, HICKEY J A, et al. An integrated sample-in-answer-out microfluidic chip for rapid human identification by STR analysis[J]. Lab Chip,2014,14(22):4415-4425.
[45] JOVANOVICH S, BOGDAN G, BELCINSKI R, et al. Developmental validation of a fully integrated sample-to-profile rapid human identification system for processing single-source reference buccal samples[J]. Forensic SciInt Genet,2015(16):181-194.
[46] GANGANO S, ELLIOTT K, ANORUO K, et al. DNA investigative lead development from blood and saliva samples in less than?two hours using the RapidHITTM Human DNA Identification System[J]. Forensic SciInt Genet Suppl Ser,2013,4(1):43-44.
[47] VERHEIJ S, CLARISSE L, BERGE M D, et al. RapidHITTM200:a promising system for rapid DNA analysis[J]. Forensic SciInt Genet Suppl Ser,2013,4(1):254-255.
[48] LARUE B L, MOORE A, KING J L, et al. An evaluation of the RapidHITR® system for reliably genotyping reference samples[J]. Forensic SciInt Genet,2014(13):104-111.
[49] HOLLAND M, WENDT F. Evaluation of the RapidHIT TM 200, an automated human identification system for STR analysis of single source samples[J]. Forensic SciInt Genet,2015(14):76-85.
[50] HENNESSY L K, MEHENDALE N, CHEAR K, et al. Developmental validation of the GlobalFilerR® express kit a 24-marker STR assay, on the RapidHITR® system[J]. Forensic SciInt Genet,2014(13):247-258.
[51] TAN E, TURINGAN R S, HOGAN C, et al. Fully integrated,fully automated generation of short tandem repeat profiles[J]. Invest Genet,2013(4):16.
[52] DAWANY N, STAFFORD-ALLEN B, MOORE D, et al. Developmental validation of the ParaDNAR® screening system-a presumptive test for the detection of DNA on forensic evidence items[J]. Forensic SciInt Genet,2014(11):73-79.
[53] BALL G, DAWNAY N, STAFFORD-ALLEN B, et al. Concordance study between the ParaDNAR® Intelligence Test, a rapid DNA profiling assay, and a conventional STR typing kit (AmpFlSTR® RSGM PlusR®)[J]. Forensic SciInt Genet,2015(16):48-51.
[54] ROMSOS E L, VALLONE P M. Rapid PCR of STR markers:Applications to human identification[J]. Forensic SciInt Genet,2015,18(4):90-99.