您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>金属液纯净度的原位、在线、定量监测方法———LiMCA技术回顾与展望

金属液纯净度的原位、在线、定量监测方法———LiMCA技术回顾与展望

3411    2016-03-08

免费

全文售价

作者:廖艳飞1,2, 王晓东2, 那贤昭1

作者单位:1. 钢铁研究总院先进钢铁流程及材料国家重点实验室, 北京 100081;
2. 中国科学院大学材料科学与光电技术学院, 北京 100049


关键词:LiMCA;金属液纯净度;夹杂物检测;电阻脉冲;电磁场测量


摘要:

原位、在线、定量的金属液纯净度监测技术因其重要的生产实际意义一直是冶金工作者梦寐以求的技术。该文对加拿大麦吉尔大学开发的LiMCA的原理、发展历史、研究手段、技术特点、应用场合进行综合分析,系统阐述国内外对这一技术的研究成果。目前,LiMCA技术已在铝工业以及熔点低于铝的金属液纯净度监测方面获得成功应用,然而,将其应用于钢铁等高温熔体时却遇到一些问题。最后,该文指出LiMCA存在的先天不足(基于接触式的测量原理),提出非(机械)接触式的洛伦兹力微颗粒探测法,有望解决高温金属液纯净度的监测问题。


In situ, online and quantitative monitoring of liquid metal cleanliness method -review and prospect of LiMCA

LIAO Yanfei1,2, WANG Xiaodong2, NA Xianzhao1

1. State Key Laboratory of Advanced Steel Processing and Products, Central Iron and Steel Research Institute, Beijing 100081, China;
2. College of Materials Science and Opto-electronic Technology, University of Chinese Academy Sciences, Beijing 100049, China

Abstract: The in situ, online and quantitative monitoring methods for metal liquid cleanliness have always been coveted by the metallurgists because of their practical significance. In this thesis, the authors have reviewed the operating theory, developing history, research instruments, technical features and industrial applications of the LiMCA(liquid metal cleanliness analyzer) technology developed by the Canadian McGill University and have systematically elaborated the domestic and foreign research findings of this technology gained in the last three decades. At present, the technology has been applied in the aluminum industry, but some critical problems occurred when it was used in iron and steel and other high-temperature melts. In the end, the authors have pointed out that this technology is unfit for high-melting-point melt because of its inherent deficiencies (contact-based measurement principle) and alternatively proposed the Lorentz force particle analyzer (LFPA), a non-contact electromagnetic induction method expected to solve the problems in monitoring the cleanliness of high temperature liquid metals.

Keywords: liquid metal cleanliness analyzer;cleanliness of molten metal;inclusion detection;resistance pulse;electromagnetic field measurement

2016, 42(2): 1-8  收稿日期: 2015-7-10;收到修改稿日期: 2015-9-21

基金项目: 中国科学院“百人计划”项目(111800M105);国家自然科学基金面上项目(51374190)

作者简介: 廖艳飞(1990-),女,硕士研究生,专业方向为金属液纯净度检测及连铸坯振痕检测。

参考文献

[1] GUTHRIE R, ISAC M. In-Situ Sensors for Liquid Metal Quality[M]∥Sensors,Sampling,and Simulation for Process control. NewYork:John Wiley & Sons Inc.,2011:1-14.
[2] MAXWELL J C. A treatise on electricity end magnetism[M].London:Cambridge University Press,2010:321.
[3] LI M, GUTHRIE R I L. In situ Detection of Inclusions in Liquid Metals:Part I Mathematical Modelling of the Behavior of Particles Traversing the Electric Sensing Zone[J]. Metallurgical and Materials Transactions B,2001(32):1067-1081.
[4] SMYTHE W R. Flow around a sphere in a circular tube[J]. Physics of Fluids(1958-1988),1961,4(6):756-759.
[5] WANG X, ISAC M, GUTHRIE R I L. Numerical studies on the in-situ measurement of inclusions in liquid steel using the ESZ or LiMCA technique[J]. ISIJ International, 2009,49(7):975-984.
[6] LI M, GUTHRIE R I L. Liquid metal cleanliness analyzer (LiMCA) in molten aluminum[J]. ISIJ International, 2001,41(2):101-110.
[7] LI M, GUTHRIE R I L. Numerical studies of the motion of spheroidal particles flowing with liquid metals through an electric sensing zone[J]. Metallurgical and Materials Transactions B,2000,31(4):855-866.
[8] LI M, GUTHRIE R I L. Numerical studies of the motion of particles in current-carrying liquid metals flowing in a circular pipe[J]. Metallurgical and Materials Transactions B,2000,31(2):357-364.
[9] GUTHRIE R I L, LI M. In Situ detection of inclusions in liquid metals: Part II. Metallurgical applications of LiMCA systems[J]. Metallurgical and Materials Transactions B,2001,32(6):1081-1093.
[10] LI M, GUTHRIE R I L. On the detection and selective separation of inclusions in liquid metal cleanliness analyzer (LiMCA)systems[J]. Metallurgical and Materials Transactions B,2000,31(4):767-777.
[11] WANG X D, GUTHRIE R I L, ISAC M. In-Situ Detection of Inclusions in Liquid Steel[C]∥Excerpt from the Processing of the COMSOL Conference 2008 Boston,2008.
[12] CAROZZA C. Water modelling of particle discrimination using LiMCA tecelnology[D]. Montreal:McGill University,1999.
[13] WANG X D. Method for distinguishing, classifying and measuring soft and hard inclusions in liquid metal:30 13/046,434[P]. 2011-03-11.
[14] Means for counting particles suspended in a fluid:2,656,508[P]. 1953-10-20.
[15] Aqueous Particle Sensor System User's Manual[Z]. Montred:McGill Metals Processing Center,1996.
[16] LI M, CAROZZA C, GUTHRIE R I L. Particle discrimination in water based LiMCA(liquid metal cleanliness analyzer) system[J]. Canadian Metallurgical Quarterly,2000,39(3):325-338.
[17] LI M, GUTHRIE R I L. Molten metal inclusion sensor probes:6,566,853[P]. 2003-05-20.
[18] HACHEY R. Apparatus for particle determination in liquid metals:5,130,639[P]. 1992-07-14.
[19] 张延丽,时利. 影响LiMCA CM测渣系统的因素及其对铸造工艺的改进[J]. 轻合金加工技术,2013,14(5):33-36.
[20] KEEGAN N J, SCHNEIDER W, KRUG H P, et al. Evaluation of the effenciency of ceramic foam and bonded particle cartridge filtration systems[J]. Light Met,1996(8):28-30.
[21] GUTHRIE R I L, NAKAJIMA H. Single-use disposable molten metal inclusion sensor:5,198,749[P]. 1993-03-30.
[22] GUTHRIE R I L. Molten metal inclusion sensor probes:5,789,910[P]. 1998-08-04.
[23] KUYUCAK S, GUTHRIE R I L. On the measurement of inclusions in copper-based melts[J]. Canadian Metallurgical Quarterly,1989,28(1):41-48.
[24] TANAKA S. Medeling inclusion behavior and slag ervtertainment in liquid steel processing vessels[D]. Montreal: McGill University,1986.
[25] STONE R P, GLAWS P C. Experience with an innovative on-line inclusion determination system for liquid steel[J]. Iron & Steel Technology,2009,6(7):42-48.
[26] GUTHRIE R I L, LEE H C. On-line measurements of inclusions in steelmaking operations[C]∥Steelmaking Conference Proceedings,1992(75):799-805.
[27] GUTHRIE R I L, WANG X, ISAC M, et al. An overview of recent developments in experimental and numerical studies for the in-situ measurement of large inclusions(~50-400 microns) in liquid steel processing vessels[J]. MS&T,2009(2):1163-1174.
[28] MOUNTFORD N D G, HAHLIN P, LEE S, et al. Progress in the development of an ultrasonic sensor for the measurement of liquid metal cleanliness[C]∥Steelmaking Conference Proceedings,1991(74):773-781.
[29] 金焱,毕学工,杨印东. 液态金属清洁度在线检测技术综述[J]. 云南冶金,2004(2):37-40.
[30] 张立峰,杨文,张学伟,等. 钢中夹杂物的系统分析技术[J]. 钢铁,2014(2):1-8.
[31] HU H, LUO A. Inclusions in molten magnesium and potential assessment techniques[J]. JOM,1996,48(10):47-51.
[32] 张诗昌,段汉桥,蔡启舟,等. 镁合金中的夹杂物及检测方法[J]. 铸造技术,2001(4):3-5.
[33] WANG X, THESS  A, THOMAS F. Lorentz Force Particles Analyzer For Liquid Metal:102013006182.2[P].2013-08-04.
[34] WANG X, THESS A. Lorentz Force Particles Analyzer For Electrically Conducting Wires:102013018318.9[P].2013-10-25.
[35] 谭艳清. 洛伦兹力微颗粒探测法中微小力测量问题的研究[D].北京:中国科学院大学,2015:34-35.