您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>用CFX软件对超声波燃气表气体流道仿真研究

用CFX软件对超声波燃气表气体流道仿真研究

3373    2016-06-02

免费

全文售价

作者:翟义然1,2, 赵勇2, 胡小川1, 刘勋2, 刘义2, 张彬1

作者单位:1. 四川大学电子信息学院, 四川 成都 610065;
2. 成都千嘉科技有限公司, 四川 成都 610211


关键词:超声波;气体流速;CFX仿真;燃气表


摘要:

针对超声波燃气表的原参考设计流道和新改进设计流道的气体流动特性,利用流体动力学仿真软件ANSYS中的CFX软件进行仿真计算和分析。获得在9个不同的流量点上两种超声波燃气表的流道内气体流动仿真数据,包括两种流道的整体流道内及超声波测量流道部分斜截面的气体流动速度分布。对仿真结果分析显示,两种流道在性能上基本一致,但新改进流道在大流量和中流量上气体流动速度分布性能比原参考设计流道性能更好;另外,与整体流道内气体流动速度分布相比,气体流动速度在超声波测量斜截面分布相对更均匀和稳定。对采用新改进流道设计制造的超声波燃气表样机进行测试,准确度达到设计要求,且样机的测量误差稳定。


Simulation study of gas flowing channel of ultrasonic gas meter based on CFX software

ZHAI Yiran1,2, ZHAO Yong2, HU Xiaochuan1, LIU Xun2, LIU Yi2, ZHANG Bin1

1. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China;
2. Chengdu Qianjia Technology Co., Ltd., Chengdu 610211, China

Abstract: The gas fluid dynamics of an originally suggested flowing channel and an improved flowing channel were simulated by the CFX software of ANSYS. Gas flowing velocities at 9 typical flow points were calculated and analyzed, including the gas velocity distribution of both the whole flowing channel and the oblique section of ultrasonic measurement. The simulation results indicate that the two channels are almost the same in performance. But the improved channel is better in gas velocity distribution at maximal and middle flowing points. Moreover, the simulation results show that, compared with the gas velocity distribution inside the whole channel, the oblique section where ultrasonic wave passes through is more uniform and stable. The test accuracy of an ultrasonic gas meter, a prototype with the improved flowing channel meets the design requirements and the measuring error is stable.

Keywords: ultrasonic;gas velocity;CFX simulation;gas meter

2016, 42(5): 135-139  收稿日期: 2015-11-17;收到修改稿日期: 2015-12-12

基金项目: 

作者简介: 翟义然(1973-),男,河北承德市人,高级工程师,博士,主要从事信息与信号处理方面的研究。

参考文献

[1] LYNNWORTH L C, LIU Y. Ultrasonic flowmeters:half-century progress report,1955-2005[J]. Ultrasonics,2006(44):1371-1378.
[2] 于洋,宗光华,丁凤林. 超声波流量测量中流速计算方法的对比[J]. 北京航空航天大学学报,2013(1):37-41.
[3] BERNARDO S, MORI M, PERES A P, et al. 3-D computational fluid dynamics for gas and gas-particle flows in a cyclone with different inlet section angles[J]. Powder Technology,2006,162(3):190-200.
[4] 高井辉. 基于CFX的离心式压气机内部流场数值研究[D].沈阳:大连理工大学,2011.
[5] 姚美红,张恒峰. 基于CFX的气体静压轴承数值研究[J].中国机械工程,2012,23(22):2681-2683.
[6] JIA H Y, KONG J Y, ZHOU S Z, et al. Study on the method for CFX numerical simulation of flow field in screw conveyer of sand fracturing blender[J]. Applied Mechanics and Materials,2013(318):207-211.
[7] 谢龙汉,赵新宇,张炯明. ANSYS CFX流体分析及仿真[M].北京:电子工业出版社,2012:104-112.
[8] 李丽丹,李声. 基于CFX和Workbench的数值仿真技术[J].中国测试,2010,36(5):79-83.
[9] 梅景康裕,乾善纪,长冈行夫,等. 超声波流体测量装置:200480004936.6[P]. 2008-07-16.
[10] 朱红钧. ANSYS 15.0几何建模与网格划分实战指南[M]. 北京:人民邮电出版社,2014:79-83.
[11] 范晋伟,李海涌,陈东菊,等. 基于速度滑移的气膜流态建模与CFX仿真分析[J]. 润滑与密封,2012,37(12):22-26.