您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>多孔材料有效导热系数的实验和模型研究

多孔材料有效导热系数的实验和模型研究

3485    2016-06-02

免费

全文售价

作者:付文强1, 高辉2, 薛征欣2, 关卫军1, 韩飞1, 王兴东1

作者单位:1. 陕西省计量科学研究院, 陕西 西安 710065;
2. 西安交通大学 热流科学与工程教育部重点实验室, 陕西 西安 710049


关键词:瞬态热线法;多孔材料;有效导热系数;多孔结构模型


摘要:

为研究多孔材料的传热机理,采用实验测量验证理论模型的方式,利用瞬态热线法测量283~333 K范围内多孔保温材料挤塑式聚苯乙烯(XPS)的有效导热系数,并根据多孔材料各组成部分导热系数、密度以及结构特点,使用5种基本模型包括串联模型、并联模型、Kopelman isotropic模型、Maxwell-Eucken模型以及EMT模型,分别对其有效导热系数进行计算。结果证明:对于XPS,Kopelman iostropic和Maxwell-Eucken模型更具适用性,其计算结果与实验结果最大偏差均小于0.5%,为进一步开展多孔材料的有效导热系数模型和实验研究提供理论依据。


Experimental measurement and calculation of thermal conductivity of porous material

FU Wenqiang1, GAO Hui2, XUE Zhengxin2, GUAN Weijun1, HAN Fei1, WANG Xingdong1

1. Shaanxi Institute of Metrology Science, Xi'an 710065, China;
2. MOE Key Laboratory of Thermo-Fluid Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Abstract: The effective thermal conductivity of porous insulation materials XPS was measured by transient hot-wire method at the temperature ranging from 283 K to 333K. In particular, the effective thermal conductivity of the XPS was calculated with 5 basic models, viz., Series, Parallel, Kopelman isotropic, Maxwell-Eucken and EMT, according to the thermal conductivity, density and structural characteristics of each component of the material. The experimental results and calculations show that Kopelman isotropic model and the Maxwell-Eucken model are more suitable for the calculation of effective thermal conductivity of porous materials. The bias between calculation and experimental results was less than 0.5%.

Keywords: transient hot-wire;porous insulation material;effective thermal conductivity;porous model

2016, 42(5): 124-130  收稿日期: 2015-11-26;收到修改稿日期: 2015-12-21

基金项目: 国家质检总局科技计划项目(20130K147)

作者简介: 付文强(1961-),男,安徽颍上县人,高级工程师,主要从事计量测试研究。

参考文献

[1] KLETT J W, MCMILLAN A D. The role of structure on the thermal properties of graphitic foams[J]. Journal of Materials Science,2004(39):3659-3676.
[2] ALAM M K, MARUYAMA B. Thermal conductivity of graphite carbon foams[J]. Experimental Heat Transfer,2004(17):227-241.
[3] BAI M, CHUNG J N. Analytical and numerical prediction of heat transfer and pressure drop in open-cell metal foams[J]. International Journal of Thermal Sciences,2011(50):869-880.
[4] BHATTACHARYA A, CALMDI V V, MAHAJAN R L. Thermo physical properties of high porosity metal foams[J]. International Jounal of Heat and Mass Transfer,2002(45):1017-1031.
[5] BOOMSMA K, POULIKAKOS D. On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam[J]. International Journal of Heat and Mass Transfer,2001(44):827-836.
[6] ZHAO C Y. Review on thermal transport in high porosity cellular metal foams with open cells[J]. International Jounrnal of Heat and Mass Transfer,2012(55):3618-3632.
[7] 公维平,刘英义. 多孔材料有效导热系数的试验研究[J].山东电力高等专科学校学报,1999(2):64-67.
[8] 吕兆华. 泡沫型多孔介质等效导热系数的计算[J]. 南京理工大学学报(自然科学版),2001,25(3):257-261.
[9] 李守巨,刘迎曦,于贺. 多孔材料等效导热系数与分形维数关系的数值模拟研究[J]. 岩土力学,2009,30(5):1465-1470.
[10] 王贞尧,吴晓,王圣妹,等. 含有结构水的多孔材料导热系数研究及预测[J]. 无机材料学报,1987,2(2):183-188.
[11] 刘晓燕,郑春媛,张雪萍,等. 两相颗粒多孔材料导热系数研究[J]. 工程热物理学报,2010,31(3):480-482.
[12] ASSAEL M J, ANTONIADISK D, WAKEHAM W A. Antoniadis,William A. Wakeham,Historical Evolution of the Transient Hot-Wire Technique[J]. Int J Thermophys,2010(31):1051-1072.
[13] NIETO D C, LI C A, NAGASHIMA S F Y, et al. Standard reference data for the thermal conductivity of liquids[J]. J Phys Chem Ref Data,1986(15):1073.
[14] ASSAEL M J, RAMIRES M L V, CASTRO C N D, et al. Benzene:A Further Liquid Thermal Conductivity Standard[J]. J Phys Chem Ref Data,1990,19(1):113-117.
[15] RAMIRES M L V, NIETO D C, NAGASHIMA Y, et al. Standard reference data for the thermal conductivity of water[J]. J Phys Chem Ref Data,1995,24(3):1377-1381.
[16] RAMIRES M L V, NIETO D C, PERKINS C A, et al. Reference data for the thermal conductivity of saturated liquid toluene over a wide range of temperatures[J]. J Phys Chem Ref Data,2000,29(2):133-139.
[17] ASSAEL M J, DIX M, GIALOU K, et al. Wakeham application of the transient hot-wire technique to the measurement of the thermal conductivity of solids[J]. International Journal of Thermophysics,2002,23(3):615-633.
[18] ASSAEL M J, GIALOU K, KAKOSIMOS K, et al. Thermal conductivity of reference solid materials[J]. International Journal of Thermophysics,2004,25(2):397-408.
[19] ASSAEL M J, BOTSIOS S, GIALOU K, et al. Thermal conductivity of polymethyl methacrylate(PMMA) and borosilicate crown glass BK7[J]. International Journal of Thermophysics,2005,26(5):1595-1605.
[20] PERALTA M V, ASSAEL M J, DIX M, et al. A novel instrument for the measurement of the thermal conductivity of molten metals. Part I. Instrument's description[J]. Int J Thermophys,2006(27):353-375.
[21] PERALTA M V, ASSAEL M J, DIX M, et al. A Novel Instrument for the Measurement of the Thermal Conductivity of Molten Metals. Part II. Measurements[J]. Int J Thermophys, 2006(27):681-699.
[22] WAKEHAM W A, NAGASHIMA A, SENGERS J V. Experimental Thermodynamics, Vol2:Measurement of the Transport Properties of Fluids[Z]. Blackwell Scientific,1991.
[23] ASSAEL M J, CHEN C F, METAXA I, et al. Thermal conductivity of carbon nanotube suspensions in water[J]. Int J Thermophys,2004(25):971-985.
[24] PERKINS R A, RAMIRES M L V, NIETO C C, et al. Thermal conductivity of saturated liquid toluene by use of anodized tantalum hot wires at high temperatures[J]. Journal of Research of the National Institute of Standards and Technology,2000,105(2):255-265.
[25] HEALY J J, DE GROOT J J, KESTIN J. The Theory of the transient hot-wire method for measuring thermal conductivity[J]. Physica,1976(82):392-408.
[26] ASSAEL M J, GIALOU K, KAKOSIMOS K, et al. Thermal conductivity of reference solid materials[J]. Int J Thermophys,2004,25(2):397-408.