您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>大数据高速列车车内压力波动仿真控制研究

大数据高速列车车内压力波动仿真控制研究

2942    2016-06-02

免费

全文售价

作者:闫中奎, 陈春俊, 孙宇

作者单位:西南交通大学机械工程学院, 四川 成都 610031


关键词:高速列车;车内压力波动;PD迭代学习控制;准周期性;变频风机


摘要:

为避免高速列车通过隧道时,列车表面的隧道压力波通过车体缝隙以及换气系统等传入车内,影响车内乘客舒适度。该文基于高速列车行驶中海量数据的准周期性以及重复性,建立基于大数据的PD型迭代学习控制系统,通过迭代学习寻求最优换气系统风机工作频率,实时调节风机新风量与废排量来抑制车内压力波动。仿真分析表明:采用基于大数据的PD型迭代学习控制方式使得车内压力波动幅值、最大1 s变化率以及最大3 s变化率呈明显下降趋势,明显优于现有的主动控制(恒定风机频率)方式,能够更加有效地抑制高速列车车内压力波动,提高乘客舒适度。


Simulation and control research of air pressure fluctuation in high-speed train based on big data

YAN Zhongkui, CHEN Chunjun, SUN Yu

School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract: In order to avoid the tunnel pressure wave generated on the train surface transmit into the interior of the train through its body gap and ventilation system so as to influence the comfort of passengers, when the high-speed train passes through the tunnel. A PD iterative learning control system was established based on big data as well as the quasi-periodicity and repeatability of massive data generated in the running process of high-speed trains. The iterative learning method was applied to work out the optimal working frequency of ventilation fans and the fresh air volume of the ventilation fans were adjusted to restrain the pressure fluctuation inside the train in real-time. The simulation results show that the proposed method has significantly reduced the pressure fluctuation amplitude as well as the maximum 1 s change rate and the maximum 3 s change rate. It is superior to existing active control methods (constant ventilation fan frequency) and more efficient in minimizing the air pressure fluctuation and improving the comfort of passengers.

Keywords: high-speed train;pressure fluctuation inside train;PD iterative learning control;quasi-periodicity;frequency conversion fan

2016, 42(5): 93-97  收稿日期: 2015-10-12;收到修改稿日期: 2015-11-23

基金项目: 国家自然科学基金项目(51475387,51375403)

作者简介: 闫中奎(1990-),男,山东济宁市人,硕士研究生,专业方向为自动化控制与检测。

参考文献

[1] 李人宪,袁磊. 高速列车通过隧道时的压力波动问题[J].机械工程学报,2014(24):115-121.
[2] 杨伟芳,陈春俊,邓力. 高速列车隧道压力波模拟系统仿真控制研究[J]. 中国测试,2014,40(2):101-104.
[3] 铃木浩明,高魁源. 车内压力波动引起耳鸣的研究[J]. 国外铁道车辆,1999(5):15-18.
[4] 程虎,伍川辉. 高速列车表面压力测试设计[J]. 中国测试,2012,38(4):96-98.
[5] 李树典,周新喜. CRH2型200 km/h动车组车内压力波动控制研究[J]. 机车电传动,2009(2):6-7.
[6] 梅元贵,周朝晖. 高速列车通过隧道时诱发车厢内压力波动的数值分析[J]. 铁道学报,2005(5):36-40.
[7] 丁浩,李人宪,刘杰. 换气风机对高速列车内部压力波动的影响分析[J]. 机械工程与自动化,2013(4):1-3.
[8] 邵焕霞,梅元贵,周朝晖. 高速空调客车通过隧道时车内压力波数值方法初探[J]. 铁道机车车辆,2006(1):31-33.
[9] 熊文伟,陈春俊,方超. 高速列车车内压力波动模糊控制研究[J]. 计算机测量与控制,2014(9):2781-2783.
[10] 李国杰,程学旗. 大数据研究:未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J]. 中国科学院院刊,2012(6):647-657.
[11] 李仁俊,韩正之. 迭代学习控制综述[J]. 控制与决策,2005(9):961-966.
[12] 于少娟,齐向东,吴聚华. 迭代学习控制理论及应用[M].北京:机械工业出版社,2005:76-92.