您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于模糊理论的4WID电动轮汽车横向稳定性控制研究

基于模糊理论的4WID电动轮汽车横向稳定性控制研究

2964    2016-06-29

免费

全文售价

作者:刘秋生1, 徐延海1,2, 谭妍玮1, 吴晓建3

作者单位:1. 西华大学汽车与交通学院, 四川 成都 610039;
2. 汽车测控与安全四川省重点实验室, 四川 成都 610039;
3. 湖南大学汽车车身先进设计制造国家重点实验室, 湖南 长沙 410082


关键词:4WID电动轮汽车;模糊控制理论;横向稳定性;主动横摆力矩控制


摘要:

为充分利用四轮独立驱动(4WID)电动轮汽车各轮驱动电机转矩独立可控及调节迅速的特点,对其横向稳定性控制问题进行研究。以车辆动力学理论为基础,基于动态仿真平台Matlab/Simulink建立包含魔术公式轮胎模型以及电机控制模型在内的九自由度整车闭环动力学系统。利用分层思想,上层运用模糊控制理论,分别设计以车身横摆角速度和质心侧偏角为控制变量的模糊控制器,并采用当质心侧偏角较小时以理想横摆角速度跟踪控制为主,当质心侧偏角较大时以抑制质心侧偏角过大为主的耦合协调控制策略产生所需附加主动横摆力矩。根据附加横摆力矩的大小,在下层分配设定一个阈值判断模块,通过判定选取效率车轮差值驱动及差值驱动+差动制动相结合的四轮驱动/制动协同分配模式来产生附加横摆力矩的方法对汽车失稳状态进行主动干预,最后在汽车典型的试验工况下进行稳定性控制的仿真测试。结果表明:采用的控制系统能够将质心侧偏角控制在稳定范围内,并能够很好地跟踪汽车的期望横摆角速度,提高电动轮汽车极限行驶工况下的横向稳定性。


Study on lateral stability control of 4WID electric-wheel vehicle based on fuzzy theory

LIU Qiusheng1, XU Yanhai1,2, TAN Yanwei1, WU Xiaojian3

1. School of Transportation and Automotive Engineering, Xihua University, Chengdu 610039, China;
2. Sichuan Key Laboratory of Automotive Control and Safety, Chengdu 610039, China;
3. The State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hu'nan University, Changsha 410082, China

Abstract: This paper involves the study of the lateral stability control of 4WID electric-wheel vehicle to fully employ the independent controllability and rapid adjustment of each wheel's driving motor torque. A nine-DOF dynamic closed-up vehicle system, including a "magic formula" tire model and a motor control model, was established with the theory of vehicle system dynamics and the simulation software Matlab/Simulink applied. Based on the layered method and the fuzzy control theory, the upper layer was designed with fuzzy controllers that used body yaw rate and the sideslip angle as controlled variable. The desired additional active yaw moment was produced by using the coupling and coordinated control strategy that when the sideslip angle is small, the focus is chiefly on the tracking control of the desired yaw rate; when it is large, the focus is mainly on the suppression of excessive sideslip angle. According to the desired additional yaw moment, a threshold determination module was set in the lower distribution control layer, by which the mode that an efficiency wheel combined with"differential drive" or "differential drive and differential brake" wheel drive/brake force distribution was determined and selected to generate additional yaw moment to intervene actively with vehicle instability. Finally, the simulation test of stability control was conducted under typical vehicle test conditions. The results show that the control system can confine the sideslip angle within a stability range, and at the same time can efficiently track the desired vehicle yaw rate so as to improve the lateral stability of electric-wheel vehicle in extreme driving conditions.

Keywords: 4WID electric-wheel vehicle;fuzzy control theory;lateral stability;active yaw moment control

2016, 42(6): 104-111  收稿日期: 2015-10-10;收到修改稿日期: 2015-12-26

基金项目: 教育部春晖计划资助项目(Z2013024);四川省新能源汽车电控技术创新支撑项目(15203559);四川省科技厅重点资助项目(2011J00043);西华大学研究生创新基金项目(ycjj2015034)

作者简介: 刘秋生(1989-),男,江西赣州市人,硕士研究生,专业方向为整车性能测试与仿真。

参考文献

[1] 李刚,宗长富. 四轮独立驱动轮毂电机电动汽车研究综述[J]. 辽宁工业大学学报(自然科学版),2014,34(1):47-52.
[2] 柴健,李旭宇,陈刚,等. 四轮独立驱动轮毂式电动汽车转向控制策略研究[J]. 公路与汽运,2014(164):1-5.
[3] WANG R G, ZHANG H, WANG J M, et al. Robust lateral motion control of four-wheel independently actuated electric vehicles with tire force saturation consideration[J]. Journal of the Franklin Institute,2015, 252(2):645-668.
[4] 玄圣夷,白海英,宋传学,等. 基于门限自调整的车辆主动横摆力矩PD控制策略研究[J]. 汽车技术,2010(11):17-20.
[5] NOVELLIS L D, SORNIOTTI A, GRUBER P, et al. Direct yaw moment control actuated through electric drivetrains and friction brakes:Theoretical design and experimental assessment[J]. Mechatronics,2015(26):1-15.
[6] 张金柱,张洪田,孙远涛. 电动汽车稳定性的横摆力矩控制[J]. 电机与控制学报,2012,16(6):75-80.
[7] 林程,彭春雷,曹万科. 独立驱动电动汽车稳定性的滑模变结构控制[J]. 汽车工程,2015,37(2):132-138.
[8] 张聪,王振臣,程菊,等. 4WIS-4WID车辆横摆稳定性AFS+ARS+DYC滑模控制[J]. 汽车工程,2014,36(3):304-310.
[9] 李刚,王超,石晶. 四轮轮毂电机电动汽车横摆力矩控制研究[C]//中国汽车工程学会年会,2014:29-33.
[10] 杨福广,阮久宏,李贻斌,等. 4WID-4WIS车辆横摆运动AFS+ARS+DYC模糊控制[J]. 农业机械学报,2011,42(10):6-12.
[11] 张安静. 汽车稳定性控制系统仿真研究[D]. 成都:西华大学汽车与交通学院,2014.
[12] 郑香美,高兴旺,赵志忠. 基于"魔术公式"的轮胎动力学仿真分析[J]. 机械与电子,2012(9):16-20.
[13] 宗长富,刘经文,郑宏宇,等. 4WID/4WIS电动车建模和特殊工况仿真[J]. 汽车工程,2011,33(10):829-833.
[14] 夏长高,李心庆,郑恩瑞. 主动横摆控制在车辆横向稳定性中的应用研究[J]. 机械设计与制造,2015(4):35-43.
[15] NAM K, FUJIMOTO H, HORI Y. Design of an adaptive sliding mode controller for robust yaw stabilisation of in-wheel-motor-driven electric vehicles[J]. International Journal of Vehicle Design,2015,67(1):98-113.
[16] Passenger cars test track for a severe lane-change maneuver Part1:Double-lane change:ISO-3888-1——1999[S].1999.