您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>汽车弹簧缸的密封性仿真与测试研究

汽车弹簧缸的密封性仿真与测试研究

3635    2016-08-19

免费

全文售价

作者:吴红梅

作者单位:杭州职业技术学院信息工程学院, 浙江 杭州 310018


关键词:弹簧缸;密封性测试;失效模型;有限元仿真;疲劳试验


摘要:

由于汽车弹簧缸长期制动造成的气密性衰减,很难动态分析不同摩擦系数的密封圈对腔压泄露的影响。因此,该文利用双参数Mooney-Rivlin分析法,建立汽车弹簧缸的腔体密封性失效模型。该模型能根据密封圈的摩擦系数,动态计算出弹簧缸的气体泄漏量,通过腔压和泄漏量的比较,判断出密封圈是否失效。利用汽车弹簧缸气密性检测仪对某型弹簧缸进行测试,实验结果表明,当摩擦系数0.1时,密封圈应力分布最佳,腔体泄漏量5 kPa;当摩擦系数0.1时,密封圈应力集中而产生气密性失效,腔体泄漏量超过5 kPa。失效模型的仿真结果与试验结果相同,该失效模型正确有效。


Numerical simulation on sealing test model of brake chamber

WU Hongmei

College of Information Engineering, Hangzhou Vocational and Technical College, Hangzhou 310018, China

Abstract: Due to the attenuation of air impermeability, the gas leakiness of a brake chamber cannot be dynamically analyzed by its friction coefficient. Therefore, a sealing model of brake chamber is proposed based on the double parameters Mooney-Rivlin algorithm and the Von-Mises stress distribute model. The leakage rate, solved by this sealing model under different friction coefficient, is used for evaluating sealing failure of brake chamber. Besides, the sealing performance of a brake chamber is detected by a sealing tester of brake chamber to verify this sealing model. The experimental result shows that the leakage is less than 5 kPa when μ≤0.1 and the stress distribution of the seal ring is optimal. However, the leakage is greater than 5 kPa when μ>0.1 by reason of the seal ring failure. It indicates that the sealing model of brake chamber is valid.

Keywords: brake chamber;sealing test;failure model;finite element simulation analysis;fatigue test

2016, 42(7): 141-144  收稿日期: 2016-1-16;收到修改稿日期: 2016-2-12

基金项目: 

作者简介: 吴红梅(1981-),女,浙江金华市人,讲师,硕士,研究方向为机电工程、应用电子技术。

参考文献

[1] RAMARATHNAM S. Modeling an electropneumatic brake system for commercial vehicles[J]. IET Electrical Systems in transportation,2014,1(1):41-48.
[2] LUO Z, JIANG W S, GUO B, et al. Analysis of separation test for automatic brake adjuster based on linear radon transformation[J]. Mechanical Systems and Signal Processing,2015,51(51):15-33.
[3] 高翔,胡建冬,郭蕊娜,等. 某型飞机蓄压器O型橡胶密封圈失效分析[J]. 教练机,2014,4(1);50-56.
[4] 董作见,吴晓,王忠,等. 基于断裂力学的O型密封圈疲劳性能研究[J]. 润滑与密封,2014,39(11):59-62.
[5] ZHAO Y M. Nonlinear dynamic analysis of rotary seal ring considering creep rotation[J]. Tribology International, 2015,82(1):101-109.
[6] CHRISTOPH S, GUNTHER R. Development of a Force-path Prediction Model for the Assembly Process of o-ring Type Seals[J]. Procedia CIRP,2014,23(3):223-228.
[7] 任全彬,蔡体敏,王荣桥,等. 橡胶"O"形密封圈结构参数和失效准则研究[J]. 固体火箭技术,2006,29(1):9-14.
[8] 胡琦. 液压伺服动作器O形密封圈实验研究与有限元分析[D]. 哈尔滨:哈尔滨工业大学,2011.
[9] ANDERS E, ARNE N. Non-unique response of mooney-rivlin model in bi-axial membrane stress[J]. Computers & Structures,2014,144(1):12-22.
[10] RODRIGUES E, FERREIRA, BOULANGER P, et al. Superposition of finite-amplitude waves propagating in a principal plane of a deformed Mooney-Rivlin material[J]. International Journal of Non-Linear Mechanics,2012,47(2):144-150.
[11] 制动气室性能要求及台架试验方法:QCT 790-2007[S]. 北京:中国标准出版社,2007.