您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>基于S变换的铁磁材料缺陷定位

基于S变换的铁磁材料缺陷定位

2727    2016-08-19

免费

全文售价

作者:王长龙, 朱红运, 陈海龙, 王建斌

作者单位:军械工程学院无人机工程系, 河北 石家庄 050003


关键词:金属磁记忆;缺陷定位;铁磁材料;S变换


摘要:

采用磁记忆方法对铁磁材料进行缺陷检测时,为降低环境噪声及应力集中对检测的影响,提出一种基于S变换的缺陷定位方法。该方法首先将负熵作为评价指标,确定S变换矩阵中由噪声产生的行向量,而后通过将噪声行向量元素置零后经S逆变换得到降噪后的信号;其次定义瞬时能量函数,并通过分析信号的瞬时能量分布特征,实现铁磁材料缺陷的准确定位;最后通过对瞬时能量函数进行加窗处理,进一步抑制应力集中对检测的影响。将该方法应用于磁记忆信号降噪及缺陷定位实验,结果表明:该方法不仅可以有效降低噪声的干扰,而且可以抑制应力集中的影响,从而实现缺陷的准确定位。


Defect location of ferromagnetic materials based on S-transform

WANG Changlong, ZHU Hongyun, CHEN Hailong, WANG Jianbin

Department of Unmanned Aerial Vehicles Engineering, Ordnance Engineering College, Shijiazhuang 050003, China

Abstract: To reduce noise interference and inhibit the influence of stress concentration when the metal magnetic memory(MMM) was utilized to test defects of ferromagnetic material, the paper proposed an approach of defect location based on S-transform. Firstly, the negentropy was treated as the estimate criterion, and the rows of S-transform matrix generated by noise were confirmed, then the rows produced by noise were set to zeroes, and the denoised signal was obtained by S inverse transform. Then the transient energy function was defined, and the precise location of the defect was obtained by analyzing the transient energy of the signal. Finally, to inhibit the influence of stress concentration, the window function was proposed and it was used to produce the energy function. Experiment was performed to verify the feasibility of the proposed approach. The results indicate that the proposed approach not only can reduce the noise effectively but also inhibit the influence of stress concentration and locate defect accurately.

Keywords: metal magnetic memory;defect location;ferromagnetic materials;S-transform

2016, 42(7): 15-19  收稿日期: 2015-9-20;收到修改稿日期: 2015-10-28

基金项目: 河北省自然科学基金项目(E2015506004)

作者简介: 王长龙(1965-),男,河北沧州市人,教授,博士,主要从事电磁无损检测方面的研究。

参考文献

[1] DUBOV A A. Detection of metallurgical and production defects in engineering components using metal magnetic memory[J]. Metallurgist,2015,59(1-2):164-167.
[2] 李学东. 基于虚拟仪器的磁记忆检测系统设计[J]. 计算机测量与控制,2008,16(12):1778-1780.
[3] QI X, DI S, LIU H, et al. Magnetic barkhause noise, metal magnetic memory testing and estimation of the ship plate welded structure stress[J]. Journal of Nondestructive Evaluation,2012(31):80-89.
[4] 徐明秀,尤天庆,徐明强,等. 磁记忆信号的定量描述[J].中南大学学报,2015,46(4):1215-1223.
[5] 冷建成,徐敏强,王坤,等. 基于磁记忆技术的疲劳损伤监测[J]. 材料工程,2011(5):26-29.
[6] 王慧鹏,董世运,董丽虹,等. 不同应力集中系数下磁记忆信号影响因素研究[J]. 材料工程,2010(12):35-38.
[7] 颜廷俊,张杰东,冯国栋,等. 基于金属磁记忆的热采湿蒸汽发生器炉管缺陷早期检测[J]. 材料工程,2011(9):68-71.
[8] 姚凯,王正道,邓博,等. 金属磁记忆技术的数值研究[J].工程力学,2011,28(9):218-222.
[9] SAMANTARAY S R. Fast S-transform based distance relaying in transmission line[J]. Electric Power Systems Research,2013(95):268-274.
[10] 金智,尹柏强. 基于广义S变换的高斯领域时频滤波方法[J]. 电子测量与仪器学报,2015,29(1):124-131.
[11] 毋文峰,陈小虎,苏勋家,等. 基于负熵的旋转机械盲信号处理[J]. 中国机械工程,2011,22(10):1193-1196.
[12] 易吉良,彭建春,罗安,等. 电能质量信号的改进S变换降噪方法[J]. 仪器仪表学报,2010,31(1):32-37.
[13] WANG H P, DONG L H, DONG S Y, et al. Fatigue damage evaluation by metal magnetic memory testing[J]. Journal of Central South University of Technology,2014(21):65-70.
[14] 唐继红,潘强华,任吉林,等. 静载拉伸下磁记忆信号变化特征分析[J]. 仪器仪表学报,2011,32(2):336-341.