您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>MEMS壁面剪切应力传感器研究进展

MEMS壁面剪切应力传感器研究进展

3182    2016-08-19

免费

全文售价

作者:雷强1, 高杨2,3, 王雄4

作者单位:1. 西南科技大学信息工程学院, 四川 绵阳 621010;
2. 中国工程物理研究院电子工程研究所, 四川 绵阳 621999;
3. 核探测与核电子学国家重点实验室(中国科学院高能物理研究所), 北京 100049;
4. 中国空气动力研究与发展中心, 四川 绵阳 621000


关键词:MEMS;传感器;剪切应力;湍流测量


摘要:

壁面剪切应力的时间特性是用于反映单个动量运输过程中非稳态结构的一个测量参数,也是湍流中相干位点的一个表征方法,是一个重要的壁面湍流的物理量。目前,主要基于近壁或壁面处的平均速度梯度和换热率与壁面切应力成正比的基础上对MEMS壁面剪切应力开展研究。因此,对MEMS壁面剪切应力传感器进行综述。根据不同的测量方式,MEMS剪切应力传感器主要分为直接测量和间接测量两种类型。对每种测量方法的原理、研究现状、优点和限制进行分析。MEMS技术使得剪切应力传感器取得显著的进步,提高空间和时间分辨率,以及测量结果的准确度。但MEMS剪切应力传感器还需要进一步发展,并且量化测量中的不确定度,才能成为一种可靠的剪切应力测量技术。最后,对未来MEMS剪切应力传感器的发展方向进行总结。


The development progress of MEMS wall shear stress sensors

LEI Qiang1, GAO Yang2,3, WANG Xiong4

1. School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010, China;
2. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China;
3. State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, CAS, Beijing 100049, China;
4. China Aerodynamics Research and Development Center, Mianyang 621000, China

Abstract: Time characteristic of wall shear stress, not only a measurement parameter used to reflect unsteady structure during individual momentum transport in flow state, but also a characterization method of corresponding points in turbulence, is an important physical indicatorfor wall turbulence. At present, the research on MEMS wall shear stress is mainly based on the fact thatmean velocity gradient and heat transfer rate near the wall or on wall surface is proportional to the wall shear stress on wall surface. So this paper summarizes the MEMS wall shear stress sensor. MEMS shear stress sensors are divided into direct measurement and indirect measurement types according to the different ways of measurement. The principles, research status, advantages and limitations of each measurement method have also been analyzed. The wall shear stress sensors have made a significant progress via MEMS technology, which improved the spatial and temporal resolution. However, MEMS shear stress sensors need further development, and it's uncertainty should be quantified in order to become a reliable shear stress measurement technology. Finally, the future development directions of the MEMS shear stress sensors are summarized.

Keywords: MEMS;sensors;shear stress;tubulence measurement

2016, 42(7): 1-8  收稿日期: 2016-2-10;收到修改稿日期: 2016-3-13

基金项目: 国家自然科学基金(61574131);中国工程物理研究院超精密加工技术重点实验室基金(2014ZA001);核探测与核电子学国家重点实验室开放课题基金(2016KF02);西南科学大学特殊环境机器人技术四川省重点实验室开放基金(14zxtk01);中国工程物理研究院电子工程研究所创新基金(S20141203);西南科技大学研究生创新基金(16ycx103)

作者简介: 雷强(1992-),男,四川绵阳市人,硕士研究生,专业方向为微电子机械系统。

参考文献

[1] SHEPLAK M, CATTAFESTA L, NISHIDA T. MEMS shear stress sensors:promise and progress[C]//24th AIAA Aerodynamic Measurement Techlogy Testing Conference. AIAA,2004:79-104.
[2] BUSHNELL D M. Viscous drag reduction in boundary layers[M]. AIAA,1990:54-75.
[3] O'GRADY A. Development of a MEMS sensor for sub-kPa shear stress measurements[D]. New York: Columbia University,2011.
[4] NAUGHTON J W, SHEPLAK M. Modern developments in shear-stress measurement[J]. Progress in Aerospace Sciences,2002,38(6):515-570.
[5] SCHETZ J A. Direct measurement of skin friction in complex flows[C]//Proceedings of the 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando Florida,2010:1-28.
[6] SCHMIDT M, HOWE R T, SENTURIA S D, et al. Design and calibration of a microfabricated floating-element shear-stress sensor[J]. IEEE Transactions on Electron Devices,1988,35(6):750-757.
[7] PAN T, HYMAN D, MEHREGANY M, et al. Microfabricated Shear Stress Sensors, Part 1: Design and Fabrication[J]. Aiaa Journal,1999,37(1):66-72.
[8] HYMAN D, PAN T, RESHOTKO E, et al. Microfabricated Shear Stress Sensors, Part 2: Testing and Calibration[J]. Aiaa Journal,1999,37(1):73-78.
[9] PATEL M P, RESHOTKO E, HYMAN D. Microfabricated Shear-Stress Sensors, Part 3:Reducing Calibration Uncertainty[J]. Aiaa Journal,2002,40(8):1582-1588.
[10] ZONG Z. MEMS floating element sensor array for wall shear stress measurement under a turbulent boundary layer[D]. Massachusetts: Tufts University,2014.
[11] ZHAO Z, LONG K R, GALLMAN J, et al. Flow Testing of a MEMS Floating Element Shear Stress Sensor[C]//52nd American Institute of Aeronautics and Astronautics Aerospace Sciences Meeting,2014.
[12] PADMANABHAN A, SHEPLAK M, BREUER K S, et al. Micromachined sensors for static and dynamic shear-stress measurements in aerodynamic flows[C]//IEEE on Solid State Sensors and Actuators International Conference. Chicago:IEEE,1997(1):137-140.
[13] PADMANABHAN A, GOLDBERG H, BREUER K D, et al. A wafer-bonded floating-element shear stress microsensor with optical position sensing by photodiodes[J]. Journal of Microelectromechanical Systems,1996,5(4):307-315.
[14] HOROWITZ S, CHEN T, CHANDRASEKHARAN V, et al. A micromachined geometric moire interferometric floating element shear stress sensor[C]//42th AIAA Aerospace Sciences Meeting. AIAA,2004:1042.
[15] CHEN T, MILLS D, CHANDRASEKHARAN V, et al. Optical miniaturization of a MEMS-based floating element shear stress sensor with moire amplification[C]//48th AIAA Aerospace Sciences Meeting. IAAA,2010:1-13.
[16] CHEN T A, MILLS D, CHANDRASEKHARANV, et al. A miniaturized optical package for wall shear stress measurements in harsh environments[C]//SPIE Sensing Technology+ Applications.International Society for Optics and Photonics,2014:91130G-91130G-16.
[17] MILLS D, CHEN T A, SHEPLAK M. Characterization of an Optical Moiré Wall Shear Stress Sensor for Harsh Environments[C]//53rd AIAA Aerospace Sciences Meeting. AIAA,2015:1900-1917.
[18] MERITT, RYAN J. Direct Measurements of Skin Friction at AEDC Hypervelocity Wind Tunnel 9[C]//53rd AIAA Aerospace Sciences Meeting. AIAA,2015:25-37.
[19] MERITT, RYAN J. Error Source Studies of Direct Measurement Skin Friction Sensors[C]//53rd AIAA Aerospace Sciences Meeting. AIAA,2015:97-111.
[20] SCHOBER M, OBERMEIER E, PIRSKAWETZ S, et al. A MEMS skin-friction sensor for time resolved measurements in separated flows[J]. Experiments in Fluids,2004, 36(4):593-599.
[21] SCHIFFER M, OBERMEIER E, GREWE F, et al. AeroMEMS surface fence for wall shear stress measurements in turbulent flows[C]//Proceedings of 44th AIAA Aerospace Sciences Meeting and Exhibit. AIAA,2006:9-12.
[22] SAVELSBERG R, SCHIFFER M, OBERMEIER E, et al. Calibration and use of a MEMS surface fence for wall shear stress measurements in turbulent flows[J]. Experiments in Fluids,2012,53(2):489-498.
[23] 马骋宇,马炳和,孙海浪,等. 面向壁面剪应力测量的底层隔板微敏感结构设计与制造[J]. 航空学报,2013,34(4):963-969.
[24] MA B H, MA C Y. A MEMS surface fence for wall shear stress measurement with high sensitivity[J]. Microsystem Technologies,2015(2):1-8.
[25] HO C M, TAI Y C. Micro-electro-mechanical-systems (MEMS) and fluid flows[J]. Annual Review of Fluid Mechanics,1998,30(1):579-612.
[26] LIU C, HUANG J B, ZHU Z, et al. A micromachined flow shear-stress sensor based on thermal transfer principles[J]. Journal of Microelectromechanical Systems,1999, 8(1):90-99.
[27] APPUKUTTAN A, SHYY W, SHEPLAK M, et al. Mixed convection induced by MEMS-based thermal shear stress sensors[J]. Numerical Heat Transfer: Part A: Applications,2003,43(3):283-305.
[28] BRUSCHI P, DILIGENTI A, NAVARRINI D, et al. A double heater integrated gas flow sensor with thermal feedback[J]. Sensors and Actuators A: Physical,2005,123:210-215.
[29] FALCO C, LUCA D A, SARFRAZ S, et al. 3D Multiphysics modelling of an SOI CMOS MEMS thermal wall shear stress sensor[J]. Procedia Engineering,2014(87):628-631.
[30] LUCA D A, HANEEF I, COULL J D, et al. High-sensitivity single thermopile SOI CMOS MEMS thermal wall shear stress sensor[C]//IEEE on Sensors Journal.Chicago: IEEE,2015,15(10):5561-5568.
[31] RUEDI J D, NAGIB H, ÖSTERLUND J, et al. Evaluation of three techniques for wall-shear measurements in three-dimensional flows[J]. Experiments in Fluids,2003, 35(5):389-396.
[32] 杨少华,马炳和. 微型热敏剪应力传感器的温度补偿[J]. 仪表技术与传感器,2011(9):9-11.
[33] HUGHES C, DUTTA D, BASHIRZADEH Y, et al. Measuring shear stress with A MicroFluidic sensor to improve aerodynamic efficiency[C]//53rd AIAA Aerospace Sciences Meeting. AIAA,2015:1919.
[34] KJEANG E, ROESCH B, MCKECHNIE J, et al. Integrated electrochemical velocimetry for microfluidic devices[J]. Microfluidics and Nanofluidics,2007,3(4):403-416.
[35] BRÜCKER C, SPATZ J, SCHRÖDER W. Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars[J]. Experiments in Fluids,2005,39(2):464-474.
[36] BRÜCKER C, BAUER D, CHAVES H. Dynamic response of micro-pillar sensors measuring fluctuating wall-shear-stress[J]. Experiments in Fluids,2007,42(5):737-749.
[37] GROßE S, SOODT T, SCHRÖDER W. Dynamic calibration technique for the micro-pillar shear-stress sensor MPS3[J]. Measurement Science and Technology,2008, 19(10):105-201.
[38] GNANAMANICKAM E P, NOTTEBROCK B, GROßE S, et al. Measurement of turbulent wall shear-stress using micro-pillars[J]. Measurement Science and Technology,2013,24(12):124002.
[39] GROßE S, SCHRÖDER W. The micro-pillar shear-stress sensor MPS3 for turbulent flow[J]. Sensors,2009,9(4):2222-2251.
[40] Mohamed Gad-el-Hak. 微机电系统应用(精)[M]. 北京:机械工业出版社,2009:121-135.