您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>温度对花岗岩和砂岩导热系数影响的试验研究

温度对花岗岩和砂岩导热系数影响的试验研究

3197    2016-01-15

免费

全文售价

作者:贺玉龙, 赵文, 张光明

作者单位:西南交通大学地球科学与环境工程学院, 四川 成都 610031


关键词:岩石力学; 导热系数; 花岗岩; 砂岩; 温度


摘要:

为探讨温度对岩石导热系数的影响,在不同平均温度水平下(28~62℃),采用平板热流计法测试花岗岩和砂岩岩样的导热系数,并初步分析温度对花岗岩和砂岩导热系数的影响。试验结果表明,对试验所用的岩样而言,花岗岩导热系数随温度的升高而缓慢下降,两者之间存在负相关的线性关系,而砂岩导热系数随温度的升高变化很小。因此,在精确计算隧道围岩温度场和应力场的分布时,应考虑温度变化对岩石导热系数的影响以及由此引起的围岩应力场的变化。


Testing study on temperature effect on thermal conductivity for granite and sandstone

HE Yu-long, ZHAO Wen, ZHANG Guang-ming

Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract: In order to study the effect of temperature on thermal conductivity, the thermal conductivity tests for granite and sandstone samples are conducted at various temperature levels (28-62℃) by using plate heat flow meter apparatus. According to the test results, the effect of temperature on the thermal conductivity of granite and sandstone were preliminarily analyzed. The testing results show that the thermal conductivity of granite decreases slowly with increasing of temperature, and there is a negative linear relationship between the thermal conductivity of granite and temperature. Where as, the thermal conductivity of sandstone has no obvious change basically with a rise in temperature. So the influence of temperature on thermal conductivity and its induced change of stress field should be considered in accurate analysis of the distribution of stress field and temperature field in surrounding rock of tunnel.

Keywords: rock mechanics; thermal conductivity; granite; sandstone; temperature

2013, 39(1): 114-116  收稿日期: 2012-7-19;收到修改稿日期: 2012-09-31

基金项目: 国家自然科学基金项目(40702040);教育部新世纪优秀人才支持计划项目(NCET-11-0710);中央高校基本科研业务费专项项目(SWJTU12CX003)

作者简介: 贺玉龙(1975-),男,河南偃师市人,教授,博士,主要从事岩体热-水-力耦合作用及铁路环境振动研究。

参考文献

[1] 谷柏森. 隧道高地温应对措施及通风设计——高黎贡山铁路特长隧道可行性研究[J]. 现代隧道技术,2007,44(2):66-71.
[2] Seipold U. Temperature dependence of thermal transport properties of crystalline rocks-a general law[J]. Tectonophysics,1998,291(1-4):161-171.
[3] Kukkonen I T, Jokinen J, Seipold U. Temperature and pressure dependencies of thermal transport properties of rocks: implications for uncertainties in thermal lithosphere models and new laboratory measurements of high-grade rocks in the central fennoscandian shield[J]. Surveys in Geophysics,1999,20(1):33-59.
[4] Popov Y, Tertychnyi V, Romushkevich R, et a1. Interrelations between thermal conductivity and other physical properties of rocks: experimental data[J]. Pure Application Geophysics,2003,160(5-6):1137-1161.
[5] Vosteen H D, Schellschmidt R. Influence of temperature on thermal conductivity, thermal capacity and thermal diffusivity for different types of rock[J]. Physics and Chemistry of the Earth, Parts A/B/C,2003,28(9-11):499-509.
[6] Abdulagatov I M,Emirov S N,Abdulagatova Z Z, et al. Effect of pressure and temperature on the thermal conductivity of rocks[J]. Journal of Chemical & Engineering Data,2006,51(1):22-33.
[7] 陈颙,吴晓东,张福勤. 岩石热开裂的实验研究[J]. 科学通报,1999,4(8):880-883.
[8] 赵永信,杨淑贞,张文仁,等. 岩石热导率的温压实验及分析[J]. 地球物理学进展,1995,10(1):104-113.
[9] Asghari M, Gul H, et al. Thermal transport properties of granites in the temperature range 253-333 K[J]. Journal of Physics D:Applied Physics,2004,37(9):1405-1409.
[10] 林睦曾. 岩石热物理学及其工程应用[M]. 重庆:重庆大学出版社,1991:138-139.