您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>动力实时子结构试验中心差分法的稳定性

动力实时子结构试验中心差分法的稳定性

2566    2016-01-19

免费

全文售价

作者:邓利霞1, 吴斌2, 杨现东3

作者单位:1. 西南石油大学土木工程与建筑学院, 四川 成都 610500;
2. 哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150090;
3. 中国建筑西南设计研究院有限公司, 四川 成都 610042


关键词:结构试验; 数值积分算法; 稳定性; 实时; 动力子结构; 加速度


摘要:

在实时子结构试验中,如果试件的反力不仅与位移有关,还与速度和加速度有关,那么对拟动力试验而言为显式方法的标准中心差分法变为隐式方法。为了使算法成为显式方法,需要引入速度和加速度的附加假定,这将导致算法的数值性能发生变化。为研究新算法的数值稳定性,在前期工作的理论基础上,针对动力子结构试件进行了试验研究。研究表明:算法的稳定性受试验子结构与数值子结构质量比的影响,且当试验子结构为动力子结构时,只要数值子结构与试验子结构的阻尼均为零,算法就是无条件不稳定的。


Stability of central difference method for dynamic RST

DENG Li-xia1, WU Bin2, YANG Xian-dong3

1. School of Civil Engineering and Architecture, Southwest Petroleum University, Chengdu 610500, China;
2. School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, China;
3. China Southwest Architectural Design and Research Institute Co., Ltd, Chengdu 610042, China

Abstract: In real-time substructure testing(RST), if the reaction force from the specimen depended not only on the displacement but also on the velocity and acceleration, the central difference method(CDM) which is explicit for PDT turned to be an implicit algorithm. Some extra velocity and acceleration formulations have to be assumed to maintain the advantage over its implicit counterpart. This may change the numerical behavior of the algorithm. The numerical stability issues were investigated through a dynamic RST with a dynamic specimen. The study indicated that the stability of the CDM in RST is affected by the mass ratio of the specimen to the numerical substructure, and the algorithm is unstable when the damping of the whole structure is equal to zero with the dynamic experimental substructure.

Keywords: structure test; numerical algorithm; stability; real-time; dynamic substructure; acceleration

2012, 38(3): 1-4  收稿日期: 2011-10-25;收到修改稿日期: 2012-1-10

基金项目: 国家自然科学基金项目(90715036)中央高校基本科研业务费专项资金项目(HIT.BRET2.2010009;HIT.ICRST.2010016)

作者简介: 邓利霞(1978-),女,湖北仙桃市人,讲师,博士,主要从事结构动力试验技术研究工作。

参考文献

[1] 邱法维,钱稼茹,陈志鹏. 结构抗震试验方法[M]. 北京:科学出版社,2000.
[2] Wu B, Bao H, Ou J, et al. Stability and accuracy analysis of central difference method for real-time substructure testing[J]. Earthquake Engineering and Structural Dynamics,2005(34):705-718.
[3] 吴斌,保海娥. 实时子结构实验Chang算法的稳定性和精度[J]. 地震工程与工程振动,2006,26(2):41-48.
[4] Wu B, Xu G, Wang Q. Operator-splitting method for real-time substructure testing[J]. Earthquake Engineering and Structural Dynamics,2006,35(3):293-314.
[5] Nguyen V T, Dorka U E. Application of digital technique in a control system for real-time substructure testing[C]∥4th World Conference on Structural Control and Monitoring,2006:13-15.
[6] Darby A P, Blakeborough A, Williams M S. Real-time substructure tests using hydraulic actuator[J]. Journal of Engineering Mechanics,1999(125):1133-1139.
[7] Horiuchi T, Inoue M, Konno T, et al. Real-time hybrid experimental system with actuator delay compensation and Its application to piping system with energy absorber[J]. Earthquake Engineering and Structural Dynamics,1999(28):1121-1141.
[8] Wu B, Deng L, Yang X. Stability of central difference method for dynamic real-time substructure testing[J]. Earthquake Engineering and Structural Dynamics,2009(38):1649-1663.