您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>一种减小ADI-FDTD误差的方法

一种减小ADI-FDTD误差的方法

2301    2016-01-23

免费

全文售价

作者:任寰弋, 童玲

作者单位:电子科技大学自动化学院, 四川 成都 610054


关键词:交变隐式差分; 时域有限差分; 时间稳定条件; 误差


摘要:

普通的FDTD法解的过程必须满足时间稳定性条件(Courant-Friedrich-Levy stability condition CFL)。当要模拟的问题具有微细结构时,由于空间步长必须足够小,相应的时间步长也需取得很小,这将使计算开销变得十分巨大。为了解决这个问题,人们提出了无条件稳定的基于交变隐式差分方向方法的时域有限差分法ADI-FDTD方法。然而,当时间步长取得较大的话,也会伴随着较大的误差。在Crank-Nicolson FDTD方法的基础上,给出了两个新的ADI-FDTD方法,相对于之前的ADI-FDTD方法在大时间步长的情况下,减小了误差。


A method to reduce error of ADI-FDTD

REN Huan-yi, TONG Ling

School of Automation Engineering, University of Electronic Science and Technology, Chengdu 610054, China

Abstract: As explicit finite-differerce time-domain (FDTD) methods must satisfy the Courant-Friedrich-Levy stability condition (CFL) stability condition,this makes computationally expensive when simulating the problem that has slightly constructures that small cell sizes and time steps are needed.To overcome the problem,unconditionally stable alternate-direction implicit (ADI) FDTD method has been recently proposed.However,it comes with large errors when time steps selected large.In this paper,the authors proposed two new ADI-FDTD method with reduced errors at large time steps,based on the Crank-Nicolson FDTD methods.

Keywords: ADI-FDTD; Courant-friedrich-levy; Stability condition; Error

2007, 33(4): 102-104128  收稿日期: 2006-12-7;收到修改稿日期: 2007-2-3

基金项目: 

作者简介: 任寰弋(1982-),男,硕士研究生,主要从事电磁场微波、平面传输线非理想情况分析。

参考文献

[1] 王秉中.计算电磁学[M].北京:科学出版社, 2005.
[2] Namiki T. A new FDTD algorithm based on alternating-direction implicit method[J]. IEEE Trans. Microw., 1999, 47(10):2003-2007.
[3] Zheng F, Chen Z and Zhang J. Toward the development of a three-dimensional unconditionally stable finitedifference time-domain method[J]. IEEE Trans. Microw. Theory Tech., 2000, 48(9):1550-1558.
[4] Garcia S G, Lee T W and Hagness S C. On the accuracy of the ADI-FDTD method[J]. IEEE Antennas Wireless Propag. Lett., 2002, 1:31-34.
[5] Sun G and Trueman C W. Approximate crank-nicolson schemes for the 2-D finite difference time domain method for TEz waves[J]. IEEE Trans. Antennas Propag., 2004, 52(11):2963-2972.
[6] Wang S, Teixeira F L and Chen J. An iterative ADIFDTD with reduced splitting error[J]. IEEE Microw. Compon. Lett., 2005, 15(2):92-94.
[7] Namiki T. 3-D ADI-FDTD method unconditionally stable time-domain algorithm for solving full vector Maxwells equations[J]. IEEE Trans.Microwave Theory and Techniques, 2000, 48(10):1743-1748.
[8] Namiki T.A new FDTD algorithm based on alternatingdirection implicit method[J].IEEE Trans. Microwave Theory and Techniques, 1999, 47(10):2003-2007.
[9] Kondylis G D, Flaviis F D,Pottie G J and Itoh T. A memory-efficient formulation of the finite-difference time-domain method for the solution of Maxwell equation[J]. IEEE Trans. Microwave Theory and Techniques, 2001, 49(7):1310-1320.
[10] Chen Zhi-zhang, Iftibar Abmed. A hybrid ADI-FDTD scheme and its comparisons with the FDTD method[S]. IEEE Antennas and Propagation Society, AP-S International Symposium (Digest), 2003, 4:360-363.
[11] Zheng Feng-hua, Chen Zhi-zhang, and Zhang Jia-zong. Development of three-dimensional unconditionally stable finite-difference time-domain methods[S]. IEEE MTT-S International Microwave Symposium Digest, 2000, 2:1117-1120.