您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>金属粘贴式电阻应变计应变传递分析

金属粘贴式电阻应变计应变传递分析

3227    2016-09-18

免费

全文售价

作者:王彪1, 刘腾1, 徐敬龙1, 刘马宝2

作者单位:1. 西安交通大学航天航空学院, 陕西 西安 710049;
2. 西安交通大学 机械结构强度与振动国家重点实验室, 陕西 西安 710049


关键词:金属粘贴式电阻应变计;胶接层;应变传递;测量准确度


摘要:

通过建立金属粘贴式电阻应变计的二维应变传递解析计算模型,对金属粘贴式电阻应变计的应变传递机理进行深入分析。结果表明,金属粘贴式电阻应变计的应变传递过程受敏感栅、基底及胶接层的几何参数和物理特性参数影响,且在金属粘贴式电阻应变计敏感栅两端存在应变过渡区。当胶接层横向宽度越宽、厚度越薄、弹性模量越大时,敏感栅两端的应变传递过渡区就越小,金属粘贴式电阻应变计的平均应变传递率则越大。因此,在实际应用中,应优先选择高弹性模量的胶粘剂,且必须严格控制金属粘贴式电阻应变计的粘贴工艺。


Strain transferring analysis of metallic bonded resistance strain gauges

WANG Biao1, LIU Teng1, XU Jinglong1, LIU Mabao2

1. School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
2. State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China

Abstract: A 2D analytical model is proposed to investigate the strain transferring mechanism of the metallic bonded resistance strain gauge. The results show that the strain of the structure cannot be transferred effectively to the grid of metallic bonded resistance strain gauge due to the influence of geometric parameters and mechanical properties of the grid, matrix and adhesive layer, and there are two strain transition regions at both ends of the grid. Moreover, the wider, thinner and stiffer adhesive layer can help decrease the strain transition region and increase the average strain transmission rate. According to the results, conclude that adhesive materials with higher Young's Modulus should be given priority in practical application, and the bonding technology of resistance strain gauges must be strictly controlled.

Keywords: metallic bonded resistance strain gauge;adhesive layer;strain transferring;measurement accuracy

2016, 42(8): 1-6  收稿日期: 2016-3-10;收到修改稿日期: 2016-4-19

基金项目: 国家自然科学基金项目(51175404)

作者简介: 王彪(1992-),男,云南玉溪市人,硕士研究生,专业方向为飞行器结构健康检测与可靠性。

参考文献

[1] PERRY C C. The resistance strain gage revisited[J]. Experimental Mechanics,1984,24(4):286-299.
[2] MAGUIRE J R, PHILLIPS P. Engineering measurement and testing of land-based structures using strain gauges[J]. Strain,2002,38(2):63-68.
[3] 沈观林. 应变电测与传感器技术的新发展及应用[J]. 中国测试,2011,37(2):87-91.
[4] 张移山,蔡佳昆,王昊. 一种基于串联回路的应变与裂纹综合监测方法[J]. 电子测量技术,2014,37(8):129-131.
[5] BEDNARZ III E T, ZHU W D. Identifying magnitudes and locations of loads on slender beams with welded and bolted joints using strain gauge-based force transducers with application to a portable army bridge[J]. Journal of Bridge Engineering,2014,19(2):254-265.
[6] RAJANNA K, MOHAN S, NAYAK M M, et al. Pressure transducer with Au-Ni thin-film strain gauges[J]. IEEE Transactions on Electron Devices,1993,40(3):521-524.
[7] 张洪润. 传感器技术大全(下册)[M]. 北京:北京航空航天大学出版社,2007:1516-1553.
[8] 关明智,王省哲,马力祯,等. 液氮低温环境下电阻应变计测试性能的试验研究[J]. 工程力学,2012(11):350-354.
[9] 刘九卿. 应变式称重传感器制造工艺及其机理分析[J].衡器,2007(2):9-19.
[10] MORADI M, SIVOTHTHAMAN S. Strain transfer analysis of surface-bonded MEMS strain sensors[J]. Sensors Journal IEEE,2013,13(2):637-643.
[11] 李东升,李宏男. 埋入式封装的光纤光栅传感器应变传递分析[J]. 力学学报,2005(4):435-441.
[12] STEHLIN P. Strain distribution in and around strain gauges[J]. The Journal of Strain Analysis for Engineering Design,1972,7(3):228-235.
[13] AJOVALASIT A, ZUCCARELLO B. Local reinforcement effect of a strain gauge installation on low modulus materials[J]. The Journal of Strain Analysis for Engineering Design,2005,40(7):643-653.
[14] AJOVALASIT A, D'ACQUISTO L, FRAGAPANE S, et al. Stiffness and reinforcement effect of electrical resistance strain gauges[J]. Strain,2007,43(4):299-305.
[15] ZIKE S, MIKKELSEN L P. Correction of gauge factor for strain gauges used in polymer composite testing[J]. Experimental Mechanics,2014,54(3):393-403.
[16] 尹福炎,王成林. 应变胶粘剂对应变计和传感器性能的影响[J]. 衡器,2004,33(2):13-22.
[17] 尹福炎. 电阻应变计与应变传递原理研究[J]. 衡器,2010(2):1-8.
[18] 王健犀. 胶粘剂在称重传感器中的应用[J]. 粘接,2002,23(6):48-50.
[19] 尹福炎. 玻璃纤维增强基底全密封结构-制作高稳定性能金属粘贴式电阻应变计的最佳选择[J]. 衡器,2007,36(5):12-15.