您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>金属材料动态力学参数试验获取方法

金属材料动态力学参数试验获取方法

2742    2016-11-11

免费

全文售价

作者:程远征, 刘建湖, 潘建强, 孟利平, 王海坤, 毛海斌, 杨静

作者单位:中国船舶科学研究中心, 江苏 无锡 214082


关键词:Instron高速材料试验机;应变率;材料动态力学参数;试验方法


摘要:

获取合理的金属材料动态本构,需要试验提供准确的材料动态力学参数。目前大多数试验采用准静态材料试验机和霍普金森杆进行,导致中、低段应变率试验数据的缺失,为对数据进行补充,该文在上述两种试验装置基础上,采用Instron高速材料试验机,对Q345钢进行动态拉伸试验,得到覆盖较广应变率的试验数据,并对试验试件的设计和修正、试验数据的处理方法以及Q345钢动态本构模型的拟合方法开展研究,总结形成一套系统的金属材料动态力学参数的试验获取方法,为建立其他材料的动态本构模型提供依据。


Experiment method of deriving the dynamic mechanical parameters of metal materials

CHENG Yuanzheng, LIU Jianhu, PAN Jianqiang, MENG Liping, WANG Haikun, MAO Haibin, YANG Jing

China Ship Scientific Research Center, Wuxi 214082, China

Abstract: To get reasonable dynamic constitutive model of metal material,accurate experimental data of dynamic properties is required.At present,most test adopting the quasi-static material testing machine and the Hopkinson bar,leading to a lack of low and medium strain rate test data.in order to supply the data,the high-speed Instron material testing machine is also adopted to test Q345 steel dynamic mechanical properties.Comprehensive experimental data on strain rate were derived.The approach of designing and fixing test specimen,the analysis of experimental data and fitting process of dynamic constitutive model were studied.An experimental method to get dynamic parameters of metal materials were summarized,which can provide support to build dynamic constitutive model.

Keywords: instron high-speed material testing machine;strain rate;material dynamic mechanical parameter;experimental method

2016, 42(10): 107-112  收稿日期: 2016-5-4;收到修改稿日期: 2016-6-13

基金项目: 

作者简介: 程远征(1988-),男,吉林德惠市人,工程师,硕士,研究方向为舰船抗爆抗冲击。

参考文献

[1] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperature[C]//Proceedings of the seventh international symposium on ballistics Netherland,1983.
[2] COWPER G R, SYMONDS P S. Strain-harding and strain-rate effects in the impact loading of cantilever beams[R]. Providence:Brown University,1957.
[3] ZERILLI F J, ARMSTONG R W. Dislocation-mechanics based constitutive relations for material dynamics calculations[J]. J Appl Phys,1987(61):1816-1825.
[4] 陈钢,陈忠富,陶俊林,等. 45钢动态塑性本构参量与验证[J]. 爆炸与冲击,2005,25(5):451-456.
[5] 陈刚,陈忠富,徐伟芳,等. 45钢的J-C损伤失效参量研究[J]. 爆炸与冲击,2007,27(2):131-135.
[6] 李营,吴卫国,汪玉,等. 基于修正CS模型的船用945钢冲击性能研究[J]. 中国造船,2014(3):94-100.
[7] 于文静,史健勇,赵金城. Q345钢材动态力学性能研究[J].建筑结构,2011,41(3):28-30,61.
[8] 孟利平. 应变率和应力三轴度对船用钢变形和断裂的影响研究[D]. 无锡:中国船舶科学研究中心,2016.
[9] 朱建士,胡晓棉,王裴,等. 爆炸与冲击动力学若干问题研究进展[J]. 力学进展,2010,40(4):400-424.
[10] 张庆明,刘彦,黄风雷,等. 材料的动力学行为[M]. 北京:国防工业出版社,2006:112-115.
[11] WIERZBICKI T, BAO Y, LEE Y W, et al. Calibration and evaluation of seven fracture models[J]. International Journal of Mechanical Sciences,2005,47(4-5):719-743.
[12] LING Y. Uniaxial true stress-strain curve after necking[J]. AMP Journal of Technology,1996,5(1):36-48.
[13] 王仁. 塑性力学基础[M]. 北京:科学出版社,1982:47-53.