您好,欢迎来到中国测试科技资讯平台!

首页> 《中国测试》期刊 >本期导读>TBVMC的冷却塔热力性能优化控制方法

TBVMC的冷却塔热力性能优化控制方法

2945    2017-02-16

免费

全文售价

作者:谭小卫1, 刘文浩2, 刘桂雄2, 黄坚2

作者单位:1. 新菱空调(佛冈)有限公司, 广东 清远 511675;
2. 华南理工大学机械与汽车工程学院, 广东 广州 510640


关键词:冷却塔;温度边值测量约束;热力性能;优化控制


摘要:

该文提出一种冷却塔热力性能优化控制方法,首先在温度边值测量约束(TBVMC)模型基础上,理论分析水泵转速与水量、扬程、功率与调速比的关系,提出冷却塔性能优化方法;其次,分别研究水泵、风机变频控制机理,提出基于定温差的水泵、风机频率控制方法,实现冷却塔热力性能优化控制;最后,为CEF-370A不锈钢逆流冷却塔搭建测量与执行模块,验证优化控制效果。结果表明:在各个测试温差下,频率拟合值与实测值相对偏差在2.4%以内。


A TBVMC based thermal performance optimization control method for cooling tower

TAN Xiaowei1, LIU Wenhao2, LIU Guixiong2, HUANG Jian2

1. SINRO(Fogang) Air-conditioning & Cooling Equipment Co., Ltd., Qingyuan 511675, China;
2. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China

Abstract: First of all, theoretical analysis was conducted on the relation among pump speed, flowrate, head of delivery, power, and speed ratio. A boundary constraint value by measurement temperature(TBVMC) thermal performance optimization model was established. Secondly, the control mechanism of pump and fan variable frequency were researched respectively.A temperature basedcooling tower thermal performance optimization control method was proposed.Finally the measurement and execution module for CEF-370A stainless steel cooling tower was set up to verify the optimal control effect. The results show that the relative deviation between frequency fitting value and measured value is less than ±2.4% in each test temperature difference.

Keywords: cooling tower;TBVMC;thermal performance;optimization control

2017, 43(1): 112-115  收稿日期: 2016-10-15;收到修改稿日期: 2016-11-29

基金项目: 广东省省级科技计划项目(2013B091500061)

作者简介: 谭小卫(1971-),女,澳门人,高级工程师,主要从事智能测量与节能控制技术。

参考文献

[1] GROBBELAAR P J, REUTER H C R, BERTRAND T P. Performance characteristics of a trickle fill in cross and counter-flow configuration in a wet-cooling tower[J]. Applied Thermal Engineering,2013,50(1):475-484.
[2] YU F W, CHAN K T. Optimization of water-cooled chiller system with load-based speed control[J]. Applied Energy,2008,85(10):931-950.
[3] 王静,李木国,刘于之,等. 模拟冷却塔计算机控制系统的设计与实现[J]. 计算机测量与控制,2012(9):2405-2406.
[4] 杨露露,卢军,唐红琴,等. 空调冷却水系统节能控制策略[J]. 暖通空调,2013(4):97-99.
[5] 赵恒鑫. 变风量空调冷却水系统优化控制研究[D]. 西安:西安建筑科技大学,2013.
[6] 刘桂雄,刘文浩,洪晓斌,等. 基于TBVMC湿式冷却塔热力性能快速评估方法[J]. 中国测试,2014,40(6):1-5.
[7] 刘文浩. 基于CFD逆流湿式冷却塔热力性能监控系统与远程监控平台[D]. 广州:华南理工大学,2016.
[8] 刘桂雄,叶季衡,肖若,等. 冷却塔热力性能在线监测装置及系统研制[J]. 中国测试,2013,39(4):64-68.